ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.10108
  4. Cited By
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness

Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness

17 June 2020
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness"

50 / 296 papers shown
Title
Window-Based Early-Exit Cascades for Uncertainty Estimation: When Deep
  Ensembles are More Efficient than Single Models
Window-Based Early-Exit Cascades for Uncertainty Estimation: When Deep Ensembles are More Efficient than Single Models
Guoxuan Xia
C. Bouganis
UQCV
52
12
0
14 Mar 2023
Training, Architecture, and Prior for Deterministic Uncertainty Methods
Training, Architecture, and Prior for Deterministic Uncertainty Methods
Bertrand Charpentier
Chenxiang Zhang
Stephan Günnemann
UQCV
OOD
AI4CE
34
6
0
10 Mar 2023
Adaptive Calibrator Ensemble for Model Calibration under Distribution
  Shift
Adaptive Calibrator Ensemble for Model Calibration under Distribution Shift
Yu-Hui Zou
Weijian Deng
Liang Zheng
OODD
17
2
0
09 Mar 2023
Non-Parametric Outlier Synthesis
Non-Parametric Outlier Synthesis
Leitian Tao
Xuefeng Du
Xiaojin Zhu
Yixuan Li
OODD
28
98
0
06 Mar 2023
Calibrating Transformers via Sparse Gaussian Processes
Calibrating Transformers via Sparse Gaussian Processes
Wenlong Chen
Yingzhen Li
UQCV
32
12
0
04 Mar 2023
A Survey on Uncertainty Quantification Methods for Deep Learning
A Survey on Uncertainty Quantification Methods for Deep Learning
Wenchong He
Zhe Jiang
Tingsong Xiao
Zelin Xu
Yukun Li
BDL
UQCV
AI4CE
19
18
0
26 Feb 2023
Guided Deep Kernel Learning
Guided Deep Kernel Learning
Idan Achituve
Gal Chechik
Ethan Fetaya
BDL
31
5
0
19 Feb 2023
G-Signatures: Global Graph Propagation With Randomized Signatures
G-Signatures: Global Graph Propagation With Randomized Signatures
Bernhard Schafl
Lukas Gruber
Johannes Brandstetter
Sepp Hochreiter
22
2
0
17 Feb 2023
A Review of Uncertainty Estimation and its Application in Medical
  Imaging
A Review of Uncertainty Estimation and its Application in Medical Imaging
K. Zou
Zhihao Chen
Xuedong Yuan
Xiaojing Shen
Meng Wang
Huazhu Fu
UQCV
49
86
0
16 Feb 2023
B-BACN: Bayesian Boundary-Aware Convolutional Network for Crack
  Characterization
B-BACN: Bayesian Boundary-Aware Convolutional Network for Crack Characterization
R. Rathnakumar
Yutian Pang
Yongming Liu
22
7
0
14 Feb 2023
Bag of Tricks for In-Distribution Calibration of Pretrained Transformers
Bag of Tricks for In-Distribution Calibration of Pretrained Transformers
Jaeyoung Kim
Dongbin Na
Sungchul Choi
Sungbin Lim
VLM
38
5
0
13 Feb 2023
Density-Softmax: Efficient Test-time Model for Uncertainty Estimation
  and Robustness under Distribution Shifts
Density-Softmax: Efficient Test-time Model for Uncertainty Estimation and Robustness under Distribution Shifts
H. Bui
Anqi Liu
OOD
UQCV
15
6
0
13 Feb 2023
Confidence-based Reliable Learning under Dual Noises
Confidence-based Reliable Learning under Dual Noises
Peng Cui
Yang Yue
Zhijie Deng
Jun Zhu
NoLa
33
8
0
10 Feb 2023
Fortuna: A Library for Uncertainty Quantification in Deep Learning
Fortuna: A Library for Uncertainty Quantification in Deep Learning
Gianluca Detommaso
Alberto Gasparin
Michele Donini
Matthias Seeger
A. Wilson
Cédric Archambeau
UQCV
BDL
36
14
0
08 Feb 2023
Variational Inference on the Final-Layer Output of Neural Networks
Variational Inference on the Final-Layer Output of Neural Networks
Yadi Wei
R. Khardon
BDL
UQCV
29
0
0
05 Feb 2023
Neural-Symbolic Inference for Robust Autoregressive Graph Parsing via
  Compositional Uncertainty Quantification
Neural-Symbolic Inference for Robust Autoregressive Graph Parsing via Compositional Uncertainty Quantification
Zi Lin
J. Liu
Jingbo Shang
UQLM
24
5
0
26 Jan 2023
Key Feature Replacement of In-Distribution Samples for
  Out-of-Distribution Detection
Key Feature Replacement of In-Distribution Samples for Out-of-Distribution Detection
Jaeyoung Kim
Seo Taek Kong
Dongbin Na
Kyu-Hwan Jung
OODD
18
4
0
26 Dec 2022
Know What I don't Know: Handling Ambiguous and Unanswerable Questions
  for Text-to-SQL
Know What I don't Know: Handling Ambiguous and Unanswerable Questions for Text-to-SQL
Bin Wang
Yan Gao
Zhoujun Li
Jian-Guang Lou
26
6
0
17 Dec 2022
Effects of Spectral Normalization in Multi-agent Reinforcement Learning
Effects of Spectral Normalization in Multi-agent Reinforcement Learning
K. Mehta
Anuj Mahajan
Kiran Ravish
24
7
0
10 Dec 2022
Reliable Multimodal Trajectory Prediction via Error Aligned Uncertainty
  Optimization
Reliable Multimodal Trajectory Prediction via Error Aligned Uncertainty Optimization
Neslihan Kose
R. Krishnan
Akash Dhamasia
Omesh Tickoo
Michael Paulitsch
32
1
0
09 Dec 2022
Calibration and generalizability of probabilistic models on low-data
  chemical datasets with DIONYSUS
Calibration and generalizability of probabilistic models on low-data chemical datasets with DIONYSUS
Gary Tom
Riley J. Hickman
Aniket N. Zinzuwadia
A. Mohajeri
Benjamín Sánchez-Lengeling
A. Aspuru‐Guzik
21
16
0
03 Dec 2022
PartAL: Efficient Partial Active Learning in Multi-Task Visual Settings
PartAL: Efficient Partial Active Learning in Multi-Task Visual Settings
N. Durasov
Nik Dorndorf
Pascal Fua
VLM
21
5
0
21 Nov 2022
ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step
  Inference
ZigZag: Universal Sampling-free Uncertainty Estimation Through Two-Step Inference
N. Durasov
Nik Dorndorf
Hieu M. Le
Pascal Fua
UQCV
27
10
0
21 Nov 2022
Layer-Stack Temperature Scaling
Layer-Stack Temperature Scaling
Amr Khalifa
Michael C. Mozer
Hanie Sedghi
Behnam Neyshabur
Ibrahim M. Alabdulmohsin
78
2
0
18 Nov 2022
Soft Augmentation for Image Classification
Soft Augmentation for Image Classification
Yang Liu
Shen Yan
Laura Leal-Taixé
James Hays
Deva Ramanan
29
11
0
09 Nov 2022
Data Models for Dataset Drift Controls in Machine Learning With Optical
  Images
Data Models for Dataset Drift Controls in Machine Learning With Optical Images
Luis Oala
Marco Aversa
Gabriel Nobis
Kurt Willis
Yoan Neuenschwander
...
E. Pomarico
Wojciech Samek
Roderick Murray-Smith
Christoph Clausen
B. Sanguinetti
28
5
0
04 Nov 2022
On double-descent in uncertainty quantification in overparametrized
  models
On double-descent in uncertainty quantification in overparametrized models
Lucas Clarté
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
UQCV
46
12
0
23 Oct 2022
Augmentation by Counterfactual Explanation -- Fixing an Overconfident
  Classifier
Augmentation by Counterfactual Explanation -- Fixing an Overconfident Classifier
Sumedha Singla
Nihal Murali
Forough Arabshahi
Sofia Triantafyllou
Kayhan Batmanghelich
CML
59
4
0
21 Oct 2022
Machine Learning for a Sustainable Energy Future
Machine Learning for a Sustainable Energy Future
Zhenpeng Yao
Yanwei Lum
Andrew K. Johnston
L. M. Mejia-Mendoza
Xiaoxia Zhou
Yonggang Wen
Alán Aspuru-Guzik
E. Sargent
Z. Seh
32
209
0
19 Oct 2022
Uncertainty estimation for out-of-distribution detection in
  computational histopathology
Uncertainty estimation for out-of-distribution detection in computational histopathology
Lea Goetz
OOD
29
0
0
18 Oct 2022
Efficient Bayesian Updates for Deep Learning via Laplace Approximations
Efficient Bayesian Updates for Deep Learning via Laplace Approximations
Denis Huseljic
M. Herde
Lukas Rauch
Paul Hahn
Zhixin Huang
D. Kottke
S. Vogt
Bernhard Sick
BDL
16
0
0
12 Oct 2022
Uncertainty Estimation for Multi-view Data: The Power of Seeing the
  Whole Picture
Uncertainty Estimation for Multi-view Data: The Power of Seeing the Whole Picture
M. Jung
He Zhao
Joanna Dipnall
Belinda Gabbe
Lan Du
UQCV
EDL
57
12
0
06 Oct 2022
On Attacking Out-Domain Uncertainty Estimation in Deep Neural Networks
On Attacking Out-Domain Uncertainty Estimation in Deep Neural Networks
Huimin Zeng
Zhenrui Yue
Yang Zhang
Ziyi Kou
Lanyu Shang
Dong Wang
OOD
AAML
33
7
0
03 Oct 2022
Out-of-Distribution Detection and Selective Generation for Conditional
  Language Models
Out-of-Distribution Detection and Selective Generation for Conditional Language Models
Jie Jessie Ren
Jiaming Luo
Yao-Min Zhao
Kundan Krishna
Mohammad Saleh
Balaji Lakshminarayanan
Peter J. Liu
OODD
72
94
0
30 Sep 2022
Raising the Bar on the Evaluation of Out-of-Distribution Detection
Raising the Bar on the Evaluation of Out-of-Distribution Detection
Jishnu Mukhoti
Tsung-Yu Lin
Bor-Chun Chen
Ashish Shah
Philip Torr
P. Dokania
Ser-Nam Lim
OODD
21
4
0
24 Sep 2022
Query-based Hard-Image Retrieval for Object Detection at Test Time
Query-based Hard-Image Retrieval for Object Detection at Test Time
Edward W. Ayers
Jonathan Sadeghi
John Redford
Romain Mueller
P. Dokania
25
1
0
23 Sep 2022
Probabilistic Dalek -- Emulator framework with probabilistic prediction
  for supernova tomography
Probabilistic Dalek -- Emulator framework with probabilistic prediction for supernova tomography
W. E. Kerzendorf
Nutan Chen
Jack O'Brien
J. Buchner
Patrick van der Smagt
MedIm
12
0
0
20 Sep 2022
Linking Neural Collapse and L2 Normalization with Improved
  Out-of-Distribution Detection in Deep Neural Networks
Linking Neural Collapse and L2 Normalization with Improved Out-of-Distribution Detection in Deep Neural Networks
J. Haas
William Yolland
B. Rabus
OODD
43
14
0
17 Sep 2022
Segmenting Known Objects and Unseen Unknowns without Prior Knowledge
Segmenting Known Objects and Unseen Unknowns without Prior Knowledge
Stefano Gasperini
Alvaro Marcos-Ramiro
Michael Schmidt
Nassir Navab
Benjamin Busam
F. Tombari
43
8
0
12 Sep 2022
SAFE: Sensitivity-Aware Features for Out-of-Distribution Object
  Detection
SAFE: Sensitivity-Aware Features for Out-of-Distribution Object Detection
Samuel Wilson
Tobias Fischer
Feras Dayoub
Dimity Miller
Niko Sünderhauf
OODD
31
29
0
29 Aug 2022
A Comprehensive Review of Digital Twin -- Part 2: Roles of Uncertainty
  Quantification and Optimization, a Battery Digital Twin, and Perspectives
A Comprehensive Review of Digital Twin -- Part 2: Roles of Uncertainty Quantification and Optimization, a Battery Digital Twin, and Perspectives
Adam Thelen
Xiaoge Zhang
Olga Fink
Yan Lu
Sayan Ghosh
B. Youn
Michael D. Todd
S. Mahadevan
Chao Hu
Zhen Hu
25
86
0
27 Aug 2022
Dynamic Memory-based Curiosity: A Bootstrap Approach for Exploration
Dynamic Memory-based Curiosity: A Bootstrap Approach for Exploration
Zijian Gao
Yiying Li
Kele Xu
Yuanzhao Zhai
Dawei Feng
Bo Ding
Xinjun Mao
Huaimin Wang
35
0
0
24 Aug 2022
Evaluating Out-of-Distribution Detectors Through Adversarial Generation
  of Outliers
Evaluating Out-of-Distribution Detectors Through Adversarial Generation of Outliers
Sangwoong Yoon
Jinwon Choi
Yonghyeon Lee
Yung-Kyun Noh
Frank C. Park
OODD
19
1
0
20 Aug 2022
Success of Uncertainty-Aware Deep Models Depends on Data Manifold
  Geometry
Success of Uncertainty-Aware Deep Models Depends on Data Manifold Geometry
M. Penrod
Harrison Termotto
Varshini Reddy
Jiayu Yao
Finale Doshi-Velez
Weiwei Pan
AAML
OOD
40
1
0
02 Aug 2022
Latent Discriminant deterministic Uncertainty
Latent Discriminant deterministic Uncertainty
Gianni Franchi
Xuanlong Yu
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
David Filliat
UQCV
24
18
0
20 Jul 2022
Instance-Aware Observer Network for Out-of-Distribution Object
  Segmentation
Instance-Aware Observer Network for Out-of-Distribution Object Segmentation
Victor Besnier
Andrei Bursuc
David Picard
Alexandre Briot
39
1
0
18 Jul 2022
Uncertainty Calibration in Bayesian Neural Networks via Distance-Aware
  Priors
Uncertainty Calibration in Bayesian Neural Networks via Distance-Aware Priors
Gianluca Detommaso
Alberto Gasparin
A. Wilson
Cédric Archambeau
UQCV
BDL
34
3
0
17 Jul 2022
Plex: Towards Reliability using Pretrained Large Model Extensions
Plex: Towards Reliability using Pretrained Large Model Extensions
Dustin Tran
J. Liu
Michael W. Dusenberry
Du Phan
Mark Collier
...
D. Sculley
Y. Gal
Zoubin Ghahramani
Jasper Snoek
Balaji Lakshminarayanan
VLM
39
124
0
15 Jul 2022
Is one annotation enough? A data-centric image classification benchmark
  for noisy and ambiguous label estimation
Is one annotation enough? A data-centric image classification benchmark for noisy and ambiguous label estimation
Lars Schmarje
Vasco Grossmann
Claudius Zelenka
S. Dippel
R. Kiko
...
M. Pastell
J. Stracke
A. Valros
N. Volkmann
Reinahrd Koch
43
34
0
13 Jul 2022
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Sample-dependent Adaptive Temperature Scaling for Improved Calibration
Thomas Joy
Francesco Pinto
Ser-Nam Lim
Philip Torr
P. Dokania
UQCV
27
30
0
13 Jul 2022
Previous
123456
Next