ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02530
  4. Cited By
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift

6 June 2019
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
    UQCV
ArXivPDFHTML

Papers citing "Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift"

50 / 1,042 papers shown
Title
Combining Ensembles and Data Augmentation can Harm your Calibration
Combining Ensembles and Data Augmentation can Harm your Calibration
Yeming Wen
Ghassen Jerfel
Rafael Muller
Michael W. Dusenberry
Jasper Snoek
Balaji Lakshminarayanan
Dustin Tran
UQCV
32
63
0
19 Oct 2020
Can I Trust My Fairness Metric? Assessing Fairness with Unlabeled Data
  and Bayesian Inference
Can I Trust My Fairness Metric? Assessing Fairness with Unlabeled Data and Bayesian Inference
Disi Ji
Padhraic Smyth
M. Steyvers
39
45
0
19 Oct 2020
Stationary Activations for Uncertainty Calibration in Deep Learning
Stationary Activations for Uncertainty Calibration in Deep Learning
Lassi Meronen
Christabella Irwanto
Arno Solin
UQCV
BDL
14
18
0
19 Oct 2020
Active Domain Adaptation via Clustering Uncertainty-weighted Embeddings
Active Domain Adaptation via Clustering Uncertainty-weighted Embeddings
Viraj Prabhu
Arjun Chandrasekaran
Kate Saenko
Judy Hoffman
OOD
106
124
0
16 Oct 2020
Maximum-Entropy Adversarial Data Augmentation for Improved
  Generalization and Robustness
Maximum-Entropy Adversarial Data Augmentation for Improved Generalization and Robustness
Long Zhao
Ting Liu
Xi Peng
Dimitris N. Metaxas
OOD
AAML
27
165
0
15 Oct 2020
Exploring the Uncertainty Properties of Neural Networks' Implicit Priors
  in the Infinite-Width Limit
Exploring the Uncertainty Properties of Neural Networks' Implicit Priors in the Infinite-Width Limit
Ben Adlam
Jaehoon Lee
Lechao Xiao
Jeffrey Pennington
Jasper Snoek
UQCV
BDL
31
15
0
14 Oct 2020
Ensemble Distillation for Structured Prediction: Calibrated, Accurate,
  Fast-Choose Three
Ensemble Distillation for Structured Prediction: Calibrated, Accurate, Fast-Choose Three
Steven Reich
David Mueller
Matthew Wiesner
BDL
OOD
UQCV
30
13
0
13 Oct 2020
Learning Calibrated Uncertainties for Domain Shift: A Distributionally
  Robust Learning Approach
Learning Calibrated Uncertainties for Domain Shift: A Distributionally Robust Learning Approach
Haoxu Wang
Zhiding Yu
Yisong Yue
Anima Anandkumar
Anqi Liu
Junchi Yan
OOD
UQCV
13
4
0
08 Oct 2020
Empirical Frequentist Coverage of Deep Learning Uncertainty
  Quantification Procedures
Empirical Frequentist Coverage of Deep Learning Uncertainty Quantification Procedures
Benjamin Kompa
Jasper Snoek
Andrew L. Beam
UQCV
BDL
34
29
0
06 Oct 2020
Learnable Uncertainty under Laplace Approximations
Learnable Uncertainty under Laplace Approximations
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
UQCV
BDL
22
30
0
06 Oct 2020
An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their
  Asymptotic Overconfidence
An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
26
9
0
06 Oct 2020
Explaining The Efficacy of Counterfactually Augmented Data
Explaining The Efficacy of Counterfactually Augmented Data
Divyansh Kaushik
Amrith Rajagopal Setlur
Eduard H. Hovy
Zachary Chase Lipton
CML
28
81
0
05 Oct 2020
Neural Bootstrapper
Neural Bootstrapper
Minsuk Shin
Hyungjoon Cho
Hyun-Seok Min
Sungbin Lim
UQCV
BDL
22
7
0
02 Oct 2020
Ask-n-Learn: Active Learning via Reliable Gradient Representations for
  Image Classification
Ask-n-Learn: Active Learning via Reliable Gradient Representations for Image Classification
Bindya Venkatesh
Jayaraman J. Thiagarajan
11
4
0
30 Sep 2020
Why have a Unified Predictive Uncertainty? Disentangling it using Deep
  Split Ensembles
Why have a Unified Predictive Uncertainty? Disentangling it using Deep Split Ensembles
U. Sarawgi
W. Zulfikar
Rishab Khincha
Pattie Maes
PER
UQCV
BDL
UD
21
7
0
25 Sep 2020
A Unifying Review of Deep and Shallow Anomaly Detection
A Unifying Review of Deep and Shallow Anomaly Detection
Lukas Ruff
Jacob R. Kauffmann
Robert A. Vandermeulen
G. Montavon
Wojciech Samek
Marius Kloft
Thomas G. Dietterich
Klaus-Robert Muller
UQCV
25
782
0
24 Sep 2020
Dataset Cartography: Mapping and Diagnosing Datasets with Training
  Dynamics
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics
Swabha Swayamdipta
Roy Schwartz
Nicholas Lourie
Yizhong Wang
Hannaneh Hajishirzi
Noah A. Smith
Yejin Choi
51
429
0
22 Sep 2020
Measuring Massive Multitask Language Understanding
Measuring Massive Multitask Language Understanding
Dan Hendrycks
Collin Burns
Steven Basart
Andy Zou
Mantas Mazeika
D. Song
Jacob Steinhardt
ELM
RALM
78
3,969
0
07 Sep 2020
Stochastic-YOLO: Efficient Probabilistic Object Detection under Dataset
  Shifts
Stochastic-YOLO: Efficient Probabilistic Object Detection under Dataset Shifts
Tiago Azevedo
R. D. Jong
Matthew Mattina
Partha P. Maji
UQCV
18
15
0
07 Sep 2020
A Wholistic View of Continual Learning with Deep Neural Networks:
  Forgotten Lessons and the Bridge to Active and Open World Learning
A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten Lessons and the Bridge to Active and Open World Learning
Martin Mundt
Yongjun Hong
Iuliia Pliushch
Visvanathan Ramesh
CLL
30
146
0
03 Sep 2020
Estimating the Brittleness of AI: Safety Integrity Levels and the Need
  for Testing Out-Of-Distribution Performance
Estimating the Brittleness of AI: Safety Integrity Levels and the Need for Testing Out-Of-Distribution Performance
A. Lohn
27
12
0
02 Sep 2020
Webly Supervised Image Classification with Self-Contained Confidence
Webly Supervised Image Classification with Self-Contained Confidence
Jingkang Yang
Xue Jiang
Weirong Chen
Xiaopeng Yan
Huabin Zheng
Ping Luo
Wayne Zhang
28
15
0
27 Aug 2020
Surrogate Model For Field Optimization Using Beta-VAE Based Regression
Surrogate Model For Field Optimization Using Beta-VAE Based Regression
Ajitabh Kumar
25
0
0
26 Aug 2020
Surrogate NAS Benchmarks: Going Beyond the Limited Search Spaces of
  Tabular NAS Benchmarks
Surrogate NAS Benchmarks: Going Beyond the Limited Search Spaces of Tabular NAS Benchmarks
Arber Zela
Julien N. Siems
Lucas Zimmer
Jovita Lukasik
M. Keuper
Frank Hutter
42
76
0
22 Aug 2020
Privacy Preserving Recalibration under Domain Shift
Privacy Preserving Recalibration under Domain Shift
Rachel Luo
Shengjia Zhao
Jiaming Song
Jonathan Kuck
Stefano Ermon
Silvio Savarese
14
3
0
21 Aug 2020
A Survey on Assessing the Generalization Envelope of Deep Neural
  Networks: Predictive Uncertainty, Out-of-distribution and Adversarial Samples
A Survey on Assessing the Generalization Envelope of Deep Neural Networks: Predictive Uncertainty, Out-of-distribution and Adversarial Samples
Julia Lust
Alexandru Paul Condurache
UQCV
AAML
AI4CE
29
8
0
21 Aug 2020
Hey Human, If your Facial Emotions are Uncertain, You Should Use
  Bayesian Neural Networks!
Hey Human, If your Facial Emotions are Uncertain, You Should Use Bayesian Neural Networks!
Maryam Matin
Matias Valdenegro-Toro
UQCV
BDL
CVBM
32
2
0
17 Aug 2020
Beyond Point Estimate: Inferring Ensemble Prediction Variation from
  Neuron Activation Strength in Recommender Systems
Beyond Point Estimate: Inferring Ensemble Prediction Variation from Neuron Activation Strength in Recommender Systems
Zhe Chen
Yuyan Wang
Dong Lin
D. Cheng
Lichan Hong
Ed H. Chi
Claire Cui
31
16
0
17 Aug 2020
Survey of XAI in digital pathology
Survey of XAI in digital pathology
Milda Pocevičiūtė
Gabriel Eilertsen
Claes Lundström
14
56
0
14 Aug 2020
Unbiased Learning for the Causal Effect of Recommendation
Unbiased Learning for the Causal Effect of Recommendation
Masahiro Sato
S. Takemori
Janmajay Singh
Tomoko Ohkuma
CML
OffRL
9
68
0
11 Aug 2020
Deep Bayesian Bandits: Exploring in Online Personalized Recommendations
Deep Bayesian Bandits: Exploring in Online Personalized Recommendations
Dalin Guo
S. Ktena
Ferenc Huszár
Pranay K. Myana
Wenzhe Shi
Alykhan Tejani
OffRL
33
40
0
03 Aug 2020
Cold Posteriors and Aleatoric Uncertainty
Cold Posteriors and Aleatoric Uncertainty
Ben Adlam
Jasper Snoek
Samuel L. Smith
BDL
UQCV
28
23
0
31 Jul 2020
Generative Classifiers as a Basis for Trustworthy Image Classification
Generative Classifiers as a Basis for Trustworthy Image Classification
Radek Mackowiak
Lynton Ardizzone
Ullrich Kothe
Carsten Rother
22
4
0
29 Jul 2020
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma
  Augmented Gaussian Processes
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma Augmented Gaussian Processes
Jake C. Snell
R. Zemel
33
63
0
20 Jul 2020
Prediction Intervals: Split Normal Mixture from Quality-Driven Deep
  Ensembles
Prediction Intervals: Split Normal Mixture from Quality-Driven Deep Ensembles
Tárik S. Salem
H. Langseth
H. Ramampiaro
UQCV
21
36
0
19 Jul 2020
Probabilistic Neighbourhood Component Analysis: Sample Efficient
  Uncertainty Estimation in Deep Learning
Probabilistic Neighbourhood Component Analysis: Sample Efficient Uncertainty Estimation in Deep Learning
Ankur Mallick
Chaitanya Dwivedi
B. Kailkhura
Gauri Joshi
T. Y. Han
UQCV
BDL
42
6
0
18 Jul 2020
On Robustness and Transferability of Convolutional Neural Networks
On Robustness and Transferability of Convolutional Neural Networks
Josip Djolonga
Jessica Yung
Michael Tschannen
Rob Romijnders
Lucas Beyer
...
D. Moldovan
Sylvain Gelly
N. Houlsby
Xiaohua Zhai
Mario Lucic
OOD
13
154
0
16 Jul 2020
Transferable Calibration with Lower Bias and Variance in Domain
  Adaptation
Transferable Calibration with Lower Bias and Variance in Domain Adaptation
Ximei Wang
Mingsheng Long
Jianmin Wang
Michael I. Jordan
25
52
0
16 Jul 2020
Anatomy of Catastrophic Forgetting: Hidden Representations and Task
  Semantics
Anatomy of Catastrophic Forgetting: Hidden Representations and Task Semantics
V. Ramasesh
Ethan Dyer
M. Raghu
CLL
24
174
0
14 Jul 2020
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Laurent Valentin Jospin
Wray Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OOD
BDL
UQCV
29
611
0
14 Jul 2020
On uncertainty estimation in active learning for image segmentation
On uncertainty estimation in active learning for image segmentation
Bo Li
T. S. Alstrøm
UQCV
28
14
0
13 Jul 2020
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bobby He
Balaji Lakshminarayanan
Yee Whye Teh
BDL
UQCV
14
116
0
11 Jul 2020
Machine Learning Explainability for External Stakeholders
Machine Learning Explainability for External Stakeholders
Umang Bhatt
Mckane Andrus
Adrian Weller
Alice Xiang
FaML
SILM
16
58
0
10 Jul 2020
Revisiting One-vs-All Classifiers for Predictive Uncertainty and
  Out-of-Distribution Detection in Neural Networks
Revisiting One-vs-All Classifiers for Predictive Uncertainty and Out-of-Distribution Detection in Neural Networks
Shreyas Padhy
Zachary Nado
Jie Jessie Ren
J. Liu
Jasper Snoek
Balaji Lakshminarayanan
UQCV
17
45
0
10 Jul 2020
Boundary thickness and robustness in learning models
Boundary thickness and robustness in learning models
Yaoqing Yang
Rekha Khanna
Yaodong Yu
A. Gholami
Kurt Keutzer
Joseph E. Gonzalez
Kannan Ramchandran
Michael W. Mahoney
OOD
18
37
0
09 Jul 2020
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference
  Methods for Deep Neural Networks
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference Methods for Deep Neural Networks
Meet P. Vadera
Adam D. Cobb
B. Jalaeian
Benjamin M. Marlin
BDL
UQCV
27
16
0
08 Jul 2020
Diverse Ensembles Improve Calibration
Diverse Ensembles Improve Calibration
Asa Cooper Stickland
Iain Murray
UQCV
FedML
27
26
0
08 Jul 2020
Deep Ensemble Analysis for Imaging X-ray Polarimetry
Deep Ensemble Analysis for Imaging X-ray Polarimetry
A. L. Peirson
R. Romani
H. Marshall
J. Steiner
L. Baldini
13
19
0
08 Jul 2020
Counterfactual Data Augmentation using Locally Factored Dynamics
Counterfactual Data Augmentation using Locally Factored Dynamics
Silviu Pitis
Elliot Creager
Animesh Garg
BDL
OffRL
26
85
0
06 Jul 2020
Increasing Trustworthiness of Deep Neural Networks via Accuracy
  Monitoring
Increasing Trustworthiness of Deep Neural Networks via Accuracy Monitoring
Zhihui Shao
Jianyi Yang
Shaolei Ren
HILM
12
10
0
03 Jul 2020
Previous
123...18192021
Next