ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02530
  4. Cited By
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
v1v2 (latest)

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift

6 June 2019
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift"

50 / 1,062 papers shown
Title
Encoding the latent posterior of Bayesian Neural Networks for
  uncertainty quantification
Encoding the latent posterior of Bayesian Neural Networks for uncertainty quantification
Gianni Franchi
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
Isabelle Bloch
BDLUQCV
94
27
0
04 Dec 2020
Leveraging Uncertainty from Deep Learning for Trustworthy Materials
  Discovery Workflows
Leveraging Uncertainty from Deep Learning for Trustworthy Materials Discovery Workflows
Jize Zhang
B. Kailkhura
T. Y. Han
OOD
48
14
0
02 Dec 2020
Disentangling Label Distribution for Long-tailed Visual Recognition
Disentangling Label Distribution for Long-tailed Visual Recognition
Youngkyu Hong
Seungju Han
Kwanghee Choi
Seokjun Seo
Beomsu Kim
Buru Chang
81
238
0
01 Dec 2020
Feature Space Singularity for Out-of-Distribution Detection
Feature Space Singularity for Out-of-Distribution Detection
Haiwen Huang
Zhihan Li
Lulu Wang
Sishuo Chen
Bin Dong
Xinyu Zhou
OODD
143
67
0
30 Nov 2020
All You Need is a Good Functional Prior for Bayesian Deep Learning
All You Need is a Good Functional Prior for Bayesian Deep Learning
Ba-Hien Tran
Simone Rossi
Dimitrios Milios
Maurizio Filippone
OODBDL
75
61
0
25 Nov 2020
A Review and Comparative Study on Probabilistic Object Detection in
  Autonomous Driving
A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving
Di Feng
Ali Harakeh
Steven Waslander
Klaus C. J. Dietmayer
AAMLUQCVEDL
126
227
0
20 Nov 2020
Uncertainty as a Form of Transparency: Measuring, Communicating, and
  Using Uncertainty
Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty
Umang Bhatt
Javier Antorán
Yunfeng Zhang
Q. V. Liao
P. Sattigeri
...
L. Nachman
R. Chunara
Madhulika Srikumar
Adrian Weller
Alice Xiang
129
252
0
15 Nov 2020
Wisdom of the Ensemble: Improving Consistency of Deep Learning Models
Wisdom of the Ensemble: Improving Consistency of Deep Learning Models
Lijing Wang
Dipanjan Ghosh
Maria Teresa Gonzalez Diaz
Ahmed K. Farahat
M. Alam
Chetan Gupta
Jiangzhuo Chen
Madhav Marathe
43
10
0
13 Nov 2020
Golden Grain: Building a Secure and Decentralized Model Marketplace for
  MLaaS
Golden Grain: Building a Secure and Decentralized Model Marketplace for MLaaS
Jiasi Weng
Jian Weng
Chengjun Cai
Hongwei Huang
Cong Wang
AI4TS
42
21
0
12 Nov 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDLUQCV
360
1,947
0
12 Nov 2020
Underspecification Presents Challenges for Credibility in Modern Machine
  Learning
Underspecification Presents Challenges for Credibility in Modern Machine Learning
Alexander DÁmour
Katherine A. Heller
D. Moldovan
Ben Adlam
B. Alipanahi
...
Kellie Webster
Steve Yadlowsky
T. Yun
Xiaohua Zhai
D. Sculley
OffRL
171
688
0
06 Nov 2020
Trust Issues: Uncertainty Estimation Does Not Enable Reliable OOD
  Detection On Medical Tabular Data
Trust Issues: Uncertainty Estimation Does Not Enable Reliable OOD Detection On Medical Tabular Data
Dennis Ulmer
L. Meijerink
Giovanni Cina
OOD
48
73
0
06 Nov 2020
Beyond Marginal Uncertainty: How Accurately can Bayesian Regression
  Models Estimate Posterior Predictive Correlations?
Beyond Marginal Uncertainty: How Accurately can Bayesian Regression Models Estimate Posterior Predictive Correlations?
Chaoqi Wang
Shengyang Sun
Roger C. Grosse
UQCV
61
25
0
06 Nov 2020
Generalized Negative Correlation Learning for Deep Ensembling
Generalized Negative Correlation Learning for Deep Ensembling
Sebastian Buschjäger
Lukas Pfahler
K. Morik
FedMLBDLUQCV
69
17
0
05 Nov 2020
Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
  Distribution Uncertainty Estimation
Amortized Conditional Normalized Maximum Likelihood: Reliable Out of Distribution Uncertainty Estimation
Aurick Zhou
Sergey Levine
BDLOODUQCV
46
13
0
05 Nov 2020
Out-of-Distribution Detection for Automotive Perception
Out-of-Distribution Detection for Automotive Perception
Julia Nitsch
Masha Itkina
Ransalu Senanayake
Juan I. Nieto
M. Schmidt
Roland Siegwart
Mykel J. Kochenderfer
Cesar Cadena
UQCV
74
64
0
03 Nov 2020
Evaluating Robustness of Predictive Uncertainty Estimation: Are
  Dirichlet-based Models Reliable?
Evaluating Robustness of Predictive Uncertainty Estimation: Are Dirichlet-based Models Reliable?
Anna-Kathrin Kopetzki
Bertrand Charpentier
Daniel Zügner
Sandhya Giri
Stephan Günnemann
82
48
0
28 Oct 2020
Bayesian Deep Learning via Subnetwork Inference
Bayesian Deep Learning via Subnetwork Inference
Erik A. Daxberger
Eric T. Nalisnick
J. Allingham
Javier Antorán
José Miguel Hernández-Lobato
UQCVBDL
130
86
0
28 Oct 2020
Selective Classification Can Magnify Disparities Across Groups
Selective Classification Can Magnify Disparities Across Groups
Erik Jones
Shiori Sagawa
Pang Wei Koh
Ananya Kumar
Percy Liang
113
47
0
27 Oct 2020
Scalable Bayesian neural networks by layer-wise input augmentation
Scalable Bayesian neural networks by layer-wise input augmentation
Trung Trinh
Samuel Kaski
Markus Heinonen
UQCVBDL
28
3
0
26 Oct 2020
Bayesian Attention Modules
Bayesian Attention Modules
Xinjie Fan
Shujian Zhang
Bo Chen
Mingyuan Zhou
183
62
0
20 Oct 2020
Smooth activations and reproducibility in deep networks
Smooth activations and reproducibility in deep networks
G. Shamir
Dong Lin
Lorenzo Coviello
66
23
0
20 Oct 2020
Combining Ensembles and Data Augmentation can Harm your Calibration
Combining Ensembles and Data Augmentation can Harm your Calibration
Yeming Wen
Ghassen Jerfel
Rafael Muller
Michael W. Dusenberry
Jasper Snoek
Balaji Lakshminarayanan
Dustin Tran
UQCV
139
64
0
19 Oct 2020
Can I Trust My Fairness Metric? Assessing Fairness with Unlabeled Data
  and Bayesian Inference
Can I Trust My Fairness Metric? Assessing Fairness with Unlabeled Data and Bayesian Inference
Disi Ji
Padhraic Smyth
M. Steyvers
81
46
0
19 Oct 2020
Stationary Activations for Uncertainty Calibration in Deep Learning
Stationary Activations for Uncertainty Calibration in Deep Learning
Lassi Meronen
Christabella Irwanto
Arno Solin
UQCVBDL
54
19
0
19 Oct 2020
Active Domain Adaptation via Clustering Uncertainty-weighted Embeddings
Active Domain Adaptation via Clustering Uncertainty-weighted Embeddings
Viraj Prabhu
Arjun Chandrasekaran
Kate Saenko
Judy Hoffman
OOD
150
128
0
16 Oct 2020
Maximum-Entropy Adversarial Data Augmentation for Improved
  Generalization and Robustness
Maximum-Entropy Adversarial Data Augmentation for Improved Generalization and Robustness
Long Zhao
Ting Liu
Xi Peng
Dimitris N. Metaxas
OODAAML
122
171
0
15 Oct 2020
Exploring the Uncertainty Properties of Neural Networks' Implicit Priors
  in the Infinite-Width Limit
Exploring the Uncertainty Properties of Neural Networks' Implicit Priors in the Infinite-Width Limit
Ben Adlam
Jaehoon Lee
Lechao Xiao
Jeffrey Pennington
Jasper Snoek
UQCVBDL
74
16
0
14 Oct 2020
Ensemble Distillation for Structured Prediction: Calibrated, Accurate,
  Fast-Choose Three
Ensemble Distillation for Structured Prediction: Calibrated, Accurate, Fast-Choose Three
Steven Reich
David Mueller
Nicholas Andrews
BDLOODUQCV
54
13
0
13 Oct 2020
Learning Calibrated Uncertainties for Domain Shift: A Distributionally
  Robust Learning Approach
Learning Calibrated Uncertainties for Domain Shift: A Distributionally Robust Learning Approach
Haoxu Wang
Zhiding Yu
Yisong Yue
Anima Anandkumar
Anqi Liu
Junchi Yan
OODUQCV
119
4
0
08 Oct 2020
Empirical Frequentist Coverage of Deep Learning Uncertainty
  Quantification Procedures
Empirical Frequentist Coverage of Deep Learning Uncertainty Quantification Procedures
Benjamin Kompa
Jasper Snoek
Andrew L. Beam
UQCVBDL
100
31
0
06 Oct 2020
Learnable Uncertainty under Laplace Approximations
Learnable Uncertainty under Laplace Approximations
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
UQCVBDL
74
30
0
06 Oct 2020
An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their
  Asymptotic Overconfidence
An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
63
9
0
06 Oct 2020
Explaining The Efficacy of Counterfactually Augmented Data
Explaining The Efficacy of Counterfactually Augmented Data
Divyansh Kaushik
Amrith Rajagopal Setlur
Eduard H. Hovy
Zachary Chase Lipton
CML
76
82
0
05 Oct 2020
Neural Bootstrapper
Neural Bootstrapper
Minsuk Shin
Hyungjoon Cho
Hyun-Seok Min
Sungbin Lim
UQCVBDL
65
7
0
02 Oct 2020
Ask-n-Learn: Active Learning via Reliable Gradient Representations for
  Image Classification
Ask-n-Learn: Active Learning via Reliable Gradient Representations for Image Classification
Bindya Venkatesh
Jayaraman J. Thiagarajan
15
4
0
30 Sep 2020
Why have a Unified Predictive Uncertainty? Disentangling it using Deep
  Split Ensembles
Why have a Unified Predictive Uncertainty? Disentangling it using Deep Split Ensembles
U. Sarawgi
W. Zulfikar
Rishab Khincha
Pattie Maes
PERUQCVBDLUD
50
7
0
25 Sep 2020
A Unifying Review of Deep and Shallow Anomaly Detection
A Unifying Review of Deep and Shallow Anomaly Detection
Lukas Ruff
Jacob R. Kauffmann
Robert A. Vandermeulen
G. Montavon
Wojciech Samek
Marius Kloft
Thomas G. Dietterich
Klaus-Robert Muller
UQCV
138
806
0
24 Sep 2020
Dataset Cartography: Mapping and Diagnosing Datasets with Training
  Dynamics
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics
Swabha Swayamdipta
Roy Schwartz
Nicholas Lourie
Yizhong Wang
Hannaneh Hajishirzi
Noah A. Smith
Yejin Choi
147
452
0
22 Sep 2020
Measuring Massive Multitask Language Understanding
Measuring Massive Multitask Language Understanding
Dan Hendrycks
Collin Burns
Steven Basart
Andy Zou
Mantas Mazeika
Basel Alomair
Jacob Steinhardt
ELMRALM
207
4,580
0
07 Sep 2020
Stochastic-YOLO: Efficient Probabilistic Object Detection under Dataset
  Shifts
Stochastic-YOLO: Efficient Probabilistic Object Detection under Dataset Shifts
Tiago Azevedo
R. D. Jong
Matthew Mattina
Partha P. Maji
UQCV
56
15
0
07 Sep 2020
A Wholistic View of Continual Learning with Deep Neural Networks:
  Forgotten Lessons and the Bridge to Active and Open World Learning
A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten Lessons and the Bridge to Active and Open World Learning
Martin Mundt
Yongjun Hong
Iuliia Pliushch
Visvanathan Ramesh
CLL
142
153
0
03 Sep 2020
Estimating the Brittleness of AI: Safety Integrity Levels and the Need
  for Testing Out-Of-Distribution Performance
Estimating the Brittleness of AI: Safety Integrity Levels and the Need for Testing Out-Of-Distribution Performance
A. Lohn
51
13
0
02 Sep 2020
Webly Supervised Image Classification with Self-Contained Confidence
Webly Supervised Image Classification with Self-Contained Confidence
Jingkang Yang
Xue Jiang
Weirong Chen
Xiaopeng Yan
Huabin Zheng
Ping Luo
Wayne Zhang
65
15
0
27 Aug 2020
Surrogate Model For Field Optimization Using Beta-VAE Based Regression
Surrogate Model For Field Optimization Using Beta-VAE Based Regression
Ajitabh Kumar
35
0
0
26 Aug 2020
Surrogate NAS Benchmarks: Going Beyond the Limited Search Spaces of
  Tabular NAS Benchmarks
Surrogate NAS Benchmarks: Going Beyond the Limited Search Spaces of Tabular NAS Benchmarks
Arber Zela
Julien N. Siems
Lucas Zimmer
Jovita Lukasik
Margret Keuper
Frank Hutter
81
81
0
22 Aug 2020
Privacy Preserving Recalibration under Domain Shift
Privacy Preserving Recalibration under Domain Shift
Rachel Luo
Shengjia Zhao
Jiaming Song
Jonathan Kuck
Stefano Ermon
Silvio Savarese
49
3
0
21 Aug 2020
A Survey on Assessing the Generalization Envelope of Deep Neural
  Networks: Predictive Uncertainty, Out-of-distribution and Adversarial Samples
A Survey on Assessing the Generalization Envelope of Deep Neural Networks: Predictive Uncertainty, Out-of-distribution and Adversarial Samples
Julia Lust
Alexandru Paul Condurache
UQCVAAMLAI4CE
31
8
0
21 Aug 2020
Hey Human, If your Facial Emotions are Uncertain, You Should Use
  Bayesian Neural Networks!
Hey Human, If your Facial Emotions are Uncertain, You Should Use Bayesian Neural Networks!
Maryam Matin
Matias Valdenegro-Toro
UQCVBDLCVBM
41
2
0
17 Aug 2020
Beyond Point Estimate: Inferring Ensemble Prediction Variation from
  Neuron Activation Strength in Recommender Systems
Beyond Point Estimate: Inferring Ensemble Prediction Variation from Neuron Activation Strength in Recommender Systems
Zhe Chen
Yuyan Wang
Dong Lin
D. Cheng
Lichan Hong
Ed H. Chi
Claire Cui
100
17
0
17 Aug 2020
Previous
123...1819202122
Next