ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02506
  4. Cited By
Practical Deep Learning with Bayesian Principles

Practical Deep Learning with Bayesian Principles

6 June 2019
Kazuki Osawa
S. Swaroop
Anirudh Jain
Runa Eschenhagen
Richard E. Turner
Rio Yokota
Mohammad Emtiyaz Khan
    BDL
    UQCV
ArXivPDFHTML

Papers citing "Practical Deep Learning with Bayesian Principles"

50 / 174 papers shown
Title
The Bayesian Learning Rule
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
57
73
0
09 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
32
1,109
0
07 Jul 2021
Probabilistic partition of unity networks: clustering based deep
  approximation
Probabilistic partition of unity networks: clustering based deep approximation
N. Trask
Mamikon A. Gulian
Andrew Huang
Kookjin Lee
11
6
0
07 Jul 2021
Unsupervised Knowledge-Transfer for Learned Image Reconstruction
Unsupervised Knowledge-Transfer for Learned Image Reconstruction
Riccardo Barbano
Ž. Kereta
A. Hauptmann
Simon Arridge
Bangti Jin
18
11
0
06 Jul 2021
Laplace Redux -- Effortless Bayesian Deep Learning
Laplace Redux -- Effortless Bayesian Deep Learning
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDL
UQCV
43
288
0
28 Jun 2021
Analytically Tractable Bayesian Deep Q-Learning
Analytically Tractable Bayesian Deep Q-Learning
Luong Ha
L. Nguyen
J. Goulet
BDL
OffRL
20
2
0
21 Jun 2021
NoiseGrad: Enhancing Explanations by Introducing Stochasticity to Model
  Weights
NoiseGrad: Enhancing Explanations by Introducing Stochasticity to Model Weights
Kirill Bykov
Anna Hedström
Shinichi Nakajima
Marina M.-C. Höhne
FAtt
17
34
0
18 Jun 2021
Being a Bit Frequentist Improves Bayesian Neural Networks
Being a Bit Frequentist Improves Bayesian Neural Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
20
15
0
18 Jun 2021
Natural continual learning: success is a journey, not (just) a
  destination
Natural continual learning: success is a journey, not (just) a destination
Ta-Chu Kao
Kristopher T. Jensen
Gido M. van de Ven
A. Bernacchia
Guillaume Hennequin
CLL
23
46
0
15 Jun 2021
Model Selection for Bayesian Autoencoders
Model Selection for Bayesian Autoencoders
Ba-Hien Tran
Simone Rossi
Dimitrios Milios
Pietro Michiardi
Edwin V. Bonilla
Maurizio Filippone
BDL
15
12
0
11 Jun 2021
Data augmentation in Bayesian neural networks and the cold posterior
  effect
Data augmentation in Bayesian neural networks and the cold posterior effect
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
26
37
0
10 Jun 2021
Estimating the Uncertainty of Neural Network Forecasts for Influenza
  Prevalence Using Web Search Activity
Estimating the Uncertainty of Neural Network Forecasts for Influenza Prevalence Using Web Search Activity
Michael Morris
Peter A. Hayes
Ingemar J. Cox
Vasileios Lampos
13
1
0
26 May 2021
Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning
Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning
Yue Wu
Shuangfei Zhai
Nitish Srivastava
J. Susskind
Jian Zhang
Ruslan Salakhutdinov
Hanlin Goh
EDL
OffRL
OnRL
13
183
0
17 May 2021
An Effective Baseline for Robustness to Distributional Shift
An Effective Baseline for Robustness to Distributional Shift
S. Thulasidasan
Sushil Thapa
S. Dhaubhadel
Gopinath Chennupati
Tanmoy Bhattacharya
J. Bilmes
OOD
OODD
26
26
0
15 May 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
Natural Posterior Network: Deep Bayesian Uncertainty for Exponential
  Family Distributions
Natural Posterior Network: Deep Bayesian Uncertainty for Exponential Family Distributions
Bertrand Charpentier
Oliver Borchert
Daniel Zügner
Simon Geisler
Stephan Günnemann
UQCV
BDL
22
17
0
10 May 2021
What Are Bayesian Neural Network Posteriors Really Like?
What Are Bayesian Neural Network Posteriors Really Like?
Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
A. Wilson
UQCV
BDL
17
366
0
29 Apr 2021
Bayesian Deep Neural Networks for Supervised Learning of Single-View
  Depth
Bayesian Deep Neural Networks for Supervised Learning of Single-View Depth
Javier Rodríguez-Puigvert
Ruben Martinez Cantin
Javier Civera
UQCV
BDL
SSL
10
7
0
29 Apr 2021
Scalable Bayesian Deep Learning with Kernel Seed Networks
Scalable Bayesian Deep Learning with Kernel Seed Networks
Sam Maksoud
Kun-li Zhao
Can Peng
Brian C. Lovell
BDL
14
1
0
19 Apr 2021
Scalable Marginal Likelihood Estimation for Model Selection in Deep
  Learning
Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning
Alexander Immer
Matthias Bauer
Vincent Fortuin
Gunnar Rätsch
Mohammad Emtiyaz Khan
BDL
UQCV
25
102
0
11 Apr 2021
Accurate and Reliable Forecasting using Stochastic Differential
  Equations
Accurate and Reliable Forecasting using Stochastic Differential Equations
Peng Cui
Zhijie Deng
Wenbo Hu
Jun Zhu
UQCV
32
1
0
28 Mar 2021
LiBRe: A Practical Bayesian Approach to Adversarial Detection
LiBRe: A Practical Bayesian Approach to Adversarial Detection
Zhijie Deng
Xiao Yang
Shizhen Xu
Hang Su
Jun Zhu
BDL
AAML
12
61
0
27 Mar 2021
Sampling-free Variational Inference for Neural Networks with
  Multiplicative Activation Noise
Sampling-free Variational Inference for Neural Networks with Multiplicative Activation Noise
Jannik Schmitt
Stefan Roth
UQCV
11
6
0
15 Mar 2021
Analytically Tractable Inference in Deep Neural Networks
Analytically Tractable Inference in Deep Neural Networks
L. Nguyen
J. Goulet
TPM
BDL
11
3
0
09 Mar 2021
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
21
107
0
24 Feb 2021
Structured Dropout Variational Inference for Bayesian Neural Networks
Structured Dropout Variational Inference for Bayesian Neural Networks
S. Nguyen
Duong Nguyen
Khai Nguyen
Khoat Than
Hung Bui
Nhat Ho
BDL
DRL
6
7
0
16 Feb 2021
Tractable structured natural gradient descent using local
  parameterizations
Tractable structured natural gradient descent using local parameterizations
Wu Lin
Frank Nielsen
Mohammad Emtiyaz Khan
Mark W. Schmidt
23
29
0
15 Feb 2021
Bayesian Neural Network Priors Revisited
Bayesian Neural Network Priors Revisited
Vincent Fortuin
Adrià Garriga-Alonso
Sebastian W. Ober
F. Wenzel
Gunnar Rätsch
Richard E. Turner
Mark van der Wilk
Laurence Aitchison
BDL
UQCV
64
137
0
12 Feb 2021
Infinitely Deep Bayesian Neural Networks with Stochastic Differential
  Equations
Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations
Winnie Xu
Ricky T. Q. Chen
Xuechen Li
David Duvenaud
BDL
UQCV
24
46
0
12 Feb 2021
Bayesian Inference with Certifiable Adversarial Robustness
Bayesian Inference with Certifiable Adversarial Robustness
Matthew Wicker
Luca Laurenti
A. Patané
Zhoutong Chen
Zheng-Wei Zhang
Marta Z. Kwiatkowska
AAML
BDL
20
30
0
10 Feb 2021
Continual Lifelong Learning in Natural Language Processing: A Survey
Continual Lifelong Learning in Natural Language Processing: A Survey
Magdalena Biesialska
Katarzyna Biesialska
Marta R. Costa-jussá
KELM
CLL
16
215
0
17 Dec 2020
All You Need is a Good Functional Prior for Bayesian Deep Learning
All You Need is a Good Functional Prior for Bayesian Deep Learning
Ba-Hien Tran
Simone Rossi
Dimitrios Milios
Maurizio Filippone
OOD
BDL
23
56
0
25 Nov 2020
Generalized Variational Continual Learning
Generalized Variational Continual Learning
Noel Loo
S. Swaroop
Richard E. Turner
BDL
CLL
33
58
0
24 Nov 2020
Deep learning for biomedical photoacoustic imaging: A review
Deep learning for biomedical photoacoustic imaging: A review
J. Gröhl
Melanie Schellenberg
Kris K. Dreher
Lena Maier-Hein
35
191
0
05 Nov 2020
Evaluating Robustness of Predictive Uncertainty Estimation: Are
  Dirichlet-based Models Reliable?
Evaluating Robustness of Predictive Uncertainty Estimation: Are Dirichlet-based Models Reliable?
Anna-Kathrin Kopetzki
Bertrand Charpentier
Daniel Zügner
Sandhya Giri
Stephan Günnemann
23
45
0
28 Oct 2020
Bayesian Deep Learning via Subnetwork Inference
Bayesian Deep Learning via Subnetwork Inference
Erik A. Daxberger
Eric T. Nalisnick
J. Allingham
Javier Antorán
José Miguel Hernández-Lobato
UQCV
BDL
23
83
0
28 Oct 2020
BayesAdapter: Being Bayesian, Inexpensively and Reliably, via Bayesian
  Fine-tuning
BayesAdapter: Being Bayesian, Inexpensively and Reliably, via Bayesian Fine-tuning
Zhijie Deng
Jun Zhu
BDL
21
9
0
05 Oct 2020
Non-exponentially weighted aggregation: regret bounds for unbounded loss
  functions
Non-exponentially weighted aggregation: regret bounds for unbounded loss functions
Pierre Alquier
22
18
0
07 Sep 2020
Improving predictions of Bayesian neural nets via local linearization
Improving predictions of Bayesian neural nets via local linearization
Alexander Immer
M. Korzepa
Matthias Bauer
BDL
6
11
0
19 Aug 2020
A statistical theory of cold posteriors in deep neural networks
A statistical theory of cold posteriors in deep neural networks
Laurence Aitchison
UQCV
BDL
9
67
0
13 Aug 2020
Tighter risk certificates for neural networks
Tighter risk certificates for neural networks
Maria Perez-Ortiz
Omar Rivasplata
John Shawe-Taylor
Csaba Szepesvári
UQCV
14
102
0
25 Jul 2020
Disentangling the Gauss-Newton Method and Approximate Inference for
  Neural Networks
Disentangling the Gauss-Newton Method and Approximate Inference for Neural Networks
Alexander Immer
BDL
6
4
0
21 Jul 2020
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Hands-on Bayesian Neural Networks -- a Tutorial for Deep Learning Users
Laurent Valentin Jospin
Wray L. Buntine
F. Boussaïd
Hamid Laga
Bennamoun
OOD
BDL
UQCV
13
609
0
14 Jul 2020
Posterior Network: Uncertainty Estimation without OOD Samples via
  Density-Based Pseudo-Counts
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
UQCV
UD
EDL
BDL
25
169
0
16 Jun 2020
How Much Can I Trust You? -- Quantifying Uncertainties in Explaining
  Neural Networks
How Much Can I Trust You? -- Quantifying Uncertainties in Explaining Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Klaus-Robert Muller
Shinichi Nakajima
Marius Kloft
UQCV
FAtt
27
31
0
16 Jun 2020
Depth Uncertainty in Neural Networks
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
38
100
0
15 Jun 2020
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán
Umang Bhatt
T. Adel
Adrian Weller
José Miguel Hernández-Lobato
UQCV
BDL
40
111
0
11 Jun 2020
Revisiting Explicit Regularization in Neural Networks for
  Well-Calibrated Predictive Uncertainty
Revisiting Explicit Regularization in Neural Networks for Well-Calibrated Predictive Uncertainty
Taejong Joo
U. Chung
BDL
UQCV
6
0
0
11 Jun 2020
Implications of Human Irrationality for Reinforcement Learning
Implications of Human Irrationality for Reinforcement Learning
Haiyang Chen
H. Chang
Andrew Howes
18
1
0
07 Jun 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
23
60
0
17 May 2020
Previous
1234
Next