Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.02506
Cited By
Practical Deep Learning with Bayesian Principles
6 June 2019
Kazuki Osawa
S. Swaroop
Anirudh Jain
Runa Eschenhagen
Richard E. Turner
Rio Yokota
Mohammad Emtiyaz Khan
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Practical Deep Learning with Bayesian Principles"
50 / 174 papers shown
Title
Uncertainty quantification in neural network classifiers -- a local linear approach
Magnus Malmström
Isaac Skog
Daniel Axehill
Fredrik K. Gustafsson
UQCV
26
1
0
10 Mar 2023
The Lie-Group Bayesian Learning Rule
E. M. Kıral
Thomas Möllenhoff
Mohammad Emtiyaz Khan
BDL
15
2
0
08 Mar 2023
Federated Learning via Variational Bayesian Inference: Personalization, Sparsity and Clustering
Xu Zhang
Wenpeng Li
Yunfeng Shao
Yinchuan Li
FedML
19
4
0
08 Mar 2023
Variational Bayesian Neural Networks via Resolution of Singularities
Susan Wei
Edmund Lau
BDL
16
1
0
13 Feb 2023
Making Substitute Models More Bayesian Can Enhance Transferability of Adversarial Examples
Qizhang Li
Yiwen Guo
W. Zuo
Hao Chen
AAML
27
35
0
10 Feb 2023
Federated Learning as Variational Inference: A Scalable Expectation Propagation Approach
Han Guo
P. Greengard
Hongyi Wang
Andrew Gelman
Yoon Kim
Eric P. Xing
FedML
21
20
0
08 Feb 2023
Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks
Neil Band
Tim G. J. Rudner
Qixuan Feng
Angelos Filos
Zachary Nado
Michael W. Dusenberry
Ghassen Jerfel
Dustin Tran
Y. Gal
OOD
UQCV
BDL
21
50
0
23 Nov 2022
Bayesian Learning for Neural Networks: an algorithmic survey
M. Magris
Alexandros Iosifidis
BDL
DRL
35
68
0
21 Nov 2022
The Implicit Delta Method
Nathan Kallus
James McInerney
23
1
0
11 Nov 2022
Farm-wide virtual load monitoring for offshore wind structures via Bayesian neural networks
Nandar Hlaing
P. G. Morato
F. D. Santos
W. Weijtjens
C. Devriendt
P. Rigo
9
6
0
31 Oct 2022
Manifold Gaussian Variational Bayes on the Precision Matrix
M. Magris
M. Shabani
Alexandros Iosifidis
37
2
0
26 Oct 2022
On the optimization and pruning for Bayesian deep learning
X. Ke
Yanan Fan
BDL
UQCV
27
1
0
24 Oct 2022
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Zhijie Deng
Feng Zhou
Jun Zhu
BDL
47
19
0
23 Oct 2022
Propagating Variational Model Uncertainty for Bioacoustic Call Label Smoothing
Georgios Rizos
J. Lawson
Simon Mitchell
Pranay Shah
Xin Wen
Cristina Banks‐Leite
R. Ewers
Bjoern W. Schuller
UQCV
16
2
0
19 Oct 2022
Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis
Benjamin Lambert
Florence Forbes
A. Tucholka
Senan Doyle
Harmonie Dehaene
M. Dojat
26
76
0
05 Oct 2022
SAM as an Optimal Relaxation of Bayes
Thomas Möllenhoff
Mohammad Emtiyaz Khan
BDL
29
32
0
04 Oct 2022
Bayesian Continual Learning via Spiking Neural Networks
N. Skatchkovsky
Hyeryung Jang
Osvaldo Simeone
BDL
30
17
0
29 Aug 2022
Uncertainty Calibration in Bayesian Neural Networks via Distance-Aware Priors
Gianluca Detommaso
Alberto Gasparin
A. Wilson
Cédric Archambeau
UQCV
BDL
29
3
0
17 Jul 2022
BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen Neural Networks
Uddeshya Upadhyay
Shyamgopal Karthik
Yanbei Chen
Massimiliano Mancini
Zeynep Akata
UQCV
BDL
26
22
0
14 Jul 2022
Variational Inference of overparameterized Bayesian Neural Networks: a theoretical and empirical study
Tom Huix
Szymon Majewski
Alain Durmus
Eric Moulines
Anna Korba
BDL
13
6
0
08 Jul 2022
Robust Bayesian Learning for Reliable Wireless AI: Framework and Applications
Matteo Zecchin
Sangwoo Park
Osvaldo Simeone
Marios Kountouris
David Gesbert
8
15
0
01 Jul 2022
Adapting the Linearised Laplace Model Evidence for Modern Deep Learning
Javier Antorán
David Janz
J. Allingham
Erik A. Daxberger
Riccardo Barbano
Eric T. Nalisnick
José Miguel Hernández-Lobato
UQCV
BDL
27
28
0
17 Jun 2022
Personalized Federated Learning via Variational Bayesian Inference
Xu Zhang
Yinchuan Li
Wenpeng Li
Kaiyang Guo
Yunfeng Shao
FedML
41
85
0
16 Jun 2022
Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling
Jiri Hron
Roman Novak
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
42
6
0
15 Jun 2022
Prioritized Training on Points that are Learnable, Worth Learning, and Not Yet Learnt
Sören Mindermann
J. Brauner
Muhammed Razzak
Mrinank Sharma
Andreas Kirsch
...
Benedikt Höltgen
Aidan N. Gomez
Adrien Morisot
Sebastian Farquhar
Y. Gal
41
148
0
14 Jun 2022
Bayesian neural networks for the probabilistic forecasting of wind direction and speed using ocean data
M. Clare
M. Piggott
BDL
8
4
0
14 Jun 2022
Laplace HypoPINN: Physics-Informed Neural Network for hypocenter localization and its predictive uncertainty
M. Izzatullah
I. Yildirim
U. Waheed
T. Alkhalifah
33
16
0
28 May 2022
Quasi Black-Box Variational Inference with Natural Gradients for Bayesian Learning
M. Magris
M. Shabani
Alexandros Iosifidis
BDL
39
4
0
23 May 2022
Posterior Refinement Improves Sample Efficiency in Bayesian Neural Networks
Agustinus Kristiadi
Runa Eschenhagen
Philipp Hennig
BDL
21
12
0
20 May 2022
Generalized Variational Inference in Function Spaces: Gaussian Measures meet Bayesian Deep Learning
Veit Wild
Robert Hu
Dino Sejdinovic
BDL
45
11
0
12 May 2022
A Survey on Uncertainty Toolkits for Deep Learning
Maximilian Pintz
Joachim Sicking
Maximilian Poretschkin
Maram Akila
ELM
30
6
0
02 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
16
48
0
01 May 2022
Explainable Artificial Intelligence for Bayesian Neural Networks: Towards trustworthy predictions of ocean dynamics
Mariana C. A. Clare
Maike Sonnewald
Redouane Lguensat
Julie Deshayes
Venkatramani Balaji
BDL
18
31
0
30 Apr 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification
Sanyam Kapoor
Wesley J. Maddox
Pavel Izmailov
A. Wilson
BDL
UD
21
48
0
30 Mar 2022
Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics in Limit-Order Book Markets
M. Magris
M. Shabani
Alexandros Iosifidis
28
9
0
07 Mar 2022
Wide Mean-Field Bayesian Neural Networks Ignore the Data
Beau Coker
W. Bruinsma
David R. Burt
Weiwei Pan
Finale Doshi-Velez
UQCV
BDL
37
22
0
23 Feb 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
31
44
0
22 Feb 2022
Model Architecture Adaption for Bayesian Neural Networks
Duo Wang
Yiren Zhao
Ilia Shumailov
Robert D. Mullins
UQCV
OOD
BDL
18
0
0
09 Feb 2022
Stochastic Neural Networks with Infinite Width are Deterministic
Liu Ziyin
Hanlin Zhang
Xiangming Meng
Yuting Lu
Eric P. Xing
Masakuni Ueda
23
3
0
30 Jan 2022
Efficient Online Bayesian Inference for Neural Bandits
Gerardo Duran-Martín
Aleyna Kara
Kevin Patrick Murphy
BDL
19
13
0
01 Dec 2021
BaLeNAS: Differentiable Architecture Search via the Bayesian Learning Rule
Miao Zhang
Jilin Hu
Steven W. Su
Shirui Pan
Xiaojun Chang
B. Yang
Gholamreza Haffari
OOD
39
15
0
25 Nov 2021
Natural Gradient Variational Inference with Gaussian Mixture Models
F. Mahdisoltani
BDL
11
1
0
15 Nov 2021
Mixtures of Laplace Approximations for Improved Post-Hoc Uncertainty in Deep Learning
Runa Eschenhagen
Erik A. Daxberger
Philipp Hennig
Agustinus Kristiadi
UQCV
BDL
28
22
0
05 Nov 2021
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent Advances and Applications
Xinlei Zhou
Han Liu
Farhad Pourpanah
T. Zeng
Xizhao Wang
UQCV
UD
19
58
0
03 Nov 2021
Mixture-of-Variational-Experts for Continual Learning
Y. Yin
Yu Wang
CLL
FedML
10
6
0
25 Oct 2021
Conditional Variational Autoencoder for Learned Image Reconstruction
Chen Zhang
Riccardo Barbano
Bangti Jin
DRL
13
19
0
22 Oct 2021
Generalized Out-of-Distribution Detection: A Survey
Jingkang Yang
Kaiyang Zhou
Yixuan Li
Ziwei Liu
185
875
0
21 Oct 2021
Learning PAC-Bayes Priors for Probabilistic Neural Networks
Maria Perez-Ortiz
Omar Rivasplata
Benjamin Guedj
M. Gleeson
Jingyu Zhang
John Shawe-Taylor
M. Bober
J. Kittler
UQCV
53
31
0
21 Sep 2021
Analytic natural gradient updates for Cholesky factor in Gaussian variational approximation
Linda S. L. Tan
25
11
0
01 Sep 2021
Explaining Bayesian Neural Networks
Kirill Bykov
Marina M.-C. Höhne
Adelaida Creosteanu
Klaus-Robert Muller
Frederick Klauschen
Shinichi Nakajima
Marius Kloft
BDL
AAML
31
25
0
23 Aug 2021
Previous
1
2
3
4
Next