ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02506
  4. Cited By
Practical Deep Learning with Bayesian Principles

Practical Deep Learning with Bayesian Principles

6 June 2019
Kazuki Osawa
S. Swaroop
Anirudh Jain
Runa Eschenhagen
Richard E. Turner
Rio Yokota
Mohammad Emtiyaz Khan
    BDL
    UQCV
ArXivPDFHTML

Papers citing "Practical Deep Learning with Bayesian Principles"

50 / 174 papers shown
Title
Variational Visual Question Answering
Variational Visual Question Answering
Tobias Jan Wieczorek
Nathalie Daun
Mohammad Emtiyaz Khan
Marcus Rohrbach
OOD
29
0
0
14 May 2025
Efficient Membership Inference Attacks by Bayesian Neural Network
Zhenlong Liu
Wenyu Jiang
Feng Zhou
Hongxin Wei
MIALM
66
1
0
10 Mar 2025
Uncertainty-Aware Decoding with Minimum Bayes Risk
Nico Daheim
Clara Meister
Thomas Möllenhoff
Iryna Gurevych
53
0
0
07 Mar 2025
Variational Bayesian Pseudo-Coreset
Variational Bayesian Pseudo-Coreset
Hyungi Lee
S. Lee
Juho Lee
BDL
36
0
0
28 Feb 2025
Post-Hoc Uncertainty Quantification in Pre-Trained Neural Networks via Activation-Level Gaussian Processes
Post-Hoc Uncertainty Quantification in Pre-Trained Neural Networks via Activation-Level Gaussian Processes
Richard Bergna
Stefan Depeweg
Sergio Calvo-Ordoñez
Jonathan Plenk
Alvaro Cartea
Jose Miguel Hernandez-Lobato
UQCV
AI4CE
40
0
0
28 Feb 2025
Spectral-factorized Positive-definite Curvature Learning for NN Training
Spectral-factorized Positive-definite Curvature Learning for NN Training
Wu Lin
Felix Dangel
Runa Eschenhagen
Juhan Bae
Richard E. Turner
Roger B. Grosse
47
0
0
10 Feb 2025
Learning Hyperparameters via a Data-Emphasized Variational Objective
Learning Hyperparameters via a Data-Emphasized Variational Objective
Ethan Harvey
Mikhail Petrov
Michael C. Hughes
63
0
0
03 Feb 2025
Ex Uno Pluria: Insights on Ensembling in Low Precision Number Systems
Ex Uno Pluria: Insights on Ensembling in Low Precision Number Systems
G. Nam
Juho Lee
69
0
0
22 Nov 2024
Bayes without Underfitting: Fully Correlated Deep Learning Posteriors
  via Alternating Projections
Bayes without Underfitting: Fully Correlated Deep Learning Posteriors via Alternating Projections
M. Miani
Hrittik Roy
Søren Hauberg
UQCV
BDL
32
0
0
22 Oct 2024
A Bayesian Interpretation of Adaptive Low-Rank Adaptation
A Bayesian Interpretation of Adaptive Low-Rank Adaptation
Haolin Chen
Philip N. Garner
47
1
0
16 Sep 2024
Function-Space MCMC for Bayesian Wide Neural Networks
Function-Space MCMC for Bayesian Wide Neural Networks
Lucia Pezzetti
Stefano Favaro
Stefano Peluchetti
BDL
121
0
0
26 Aug 2024
EVCL: Elastic Variational Continual Learning with Weight Consolidation
EVCL: Elastic Variational Continual Learning with Weight Consolidation
Hunar Batra
Ronald Clark
CLL
22
1
0
23 Jun 2024
A Rate-Distortion View of Uncertainty Quantification
A Rate-Distortion View of Uncertainty Quantification
Ifigeneia Apostolopoulou
Benjamin Eysenbach
Frank Nielsen
Artur Dubrawski
UQCV
38
2
0
16 Jun 2024
Regularized KL-Divergence for Well-Defined Function-Space Variational
  Inference in Bayesian neural networks
Regularized KL-Divergence for Well-Defined Function-Space Variational Inference in Bayesian neural networks
Tristan Cinquin
Robert Bamler
UQCV
BDL
38
2
0
06 Jun 2024
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
T. Pouplin
Alan Jeffares
Nabeel Seedat
Mihaela van der Schaar
50
3
0
05 Jun 2024
Understanding Stochastic Natural Gradient Variational Inference
Understanding Stochastic Natural Gradient Variational Inference
Kaiwen Wu
Jacob R. Gardner
BDL
54
1
0
04 Jun 2024
Transitional Uncertainty with Layered Intermediate Predictions
Transitional Uncertainty with Layered Intermediate Predictions
Ryan Benkert
M. Prabhushankar
Ghassan AlRegib
40
1
0
25 May 2024
Generalized Laplace Approximation
Generalized Laplace Approximation
Yinsong Chen
Samson S. Yu
Zhong Li
Chee Peng Lim
BDL
53
0
0
22 May 2024
Gaussian Stochastic Weight Averaging for Bayesian Low-Rank Adaptation of
  Large Language Models
Gaussian Stochastic Weight Averaging for Bayesian Low-Rank Adaptation of Large Language Models
Emre Onal
Klemens Flöge
Emma Caldwell
A. Sheverdin
Vincent Fortuin
UQCV
BDL
45
9
0
06 May 2024
Tilt your Head: Activating the Hidden Spatial-Invariance of Classifiers
Tilt your Head: Activating the Hidden Spatial-Invariance of Classifiers
Johann Schmidt
Sebastian Stober
43
1
0
06 May 2024
Variational Stochastic Gradient Descent for Deep Neural Networks
Variational Stochastic Gradient Descent for Deep Neural Networks
Haotian Chen
Anna Kuzina
Babak Esmaeili
Jakub M. Tomczak
41
0
0
09 Apr 2024
EventSleep: Sleep Activity Recognition with Event Cameras
EventSleep: Sleep Activity Recognition with Event Cameras
Carlos Plou
Nerea Gallego
Alberto Sabater
Eduardo Montijano
Pablo Urcola
Luis Montesano
Ruben Martinez-Cantin
Ana C. Murillo
29
1
0
02 Apr 2024
A Unified and General Framework for Continual Learning
A Unified and General Framework for Continual Learning
Zhenyi Wang
Yan Li
Li Shen
Heng-Chiao Huang
CLL
32
17
0
20 Mar 2024
Function-space Parameterization of Neural Networks for Sequential
  Learning
Function-space Parameterization of Neural Networks for Sequential Learning
Aidan Scannell
Riccardo Mereu
Paul E. Chang
Ella Tamir
J. Pajarinen
Arno Solin
BDL
34
5
0
16 Mar 2024
Variational Learning is Effective for Large Deep Networks
Variational Learning is Effective for Large Deep Networks
Yuesong Shen
Nico Daheim
Bai Cong
Peter Nickl
Gian Maria Marconi
...
Rio Yokota
Iryna Gurevych
Daniel Cremers
Mohammad Emtiyaz Khan
Thomas Möllenhoff
35
22
0
27 Feb 2024
Discriminant Distance-Aware Representation on Deterministic Uncertainty
  Quantification Methods
Discriminant Distance-Aware Representation on Deterministic Uncertainty Quantification Methods
Jiaxin Zhang
Kamalika Das
Kumar Sricharan
UQCV
27
0
0
20 Feb 2024
BEARS Make Neuro-Symbolic Models Aware of their Reasoning Shortcuts
BEARS Make Neuro-Symbolic Models Aware of their Reasoning Shortcuts
Emanuele Marconato
Samuele Bortolotti
Emile van Krieken
Antonio Vergari
Andrea Passerini
Stefano Teso
41
18
0
19 Feb 2024
Rethinking Test-time Likelihood: The Likelihood Path Principle and Its
  Application to OOD Detection
Rethinking Test-time Likelihood: The Likelihood Path Principle and Its Application to OOD Detection
Sicong Huang
Jiawei He
Kry Yik-Chau Lui
22
0
0
10 Jan 2024
Bayesian Intrinsic Groupwise Image Registration: Unsupervised
  Disentanglement of Anatomy and Geometry
Bayesian Intrinsic Groupwise Image Registration: Unsupervised Disentanglement of Anatomy and Geometry
Xinzhe Luo
Xin Wang
Linda Shapiro
Chun Yuan
Jianfeng Feng
Xiahai Zhuang
26
0
0
04 Jan 2024
Tractable Function-Space Variational Inference in Bayesian Neural
  Networks
Tractable Function-Space Variational Inference in Bayesian Neural Networks
Tim G. J. Rudner
Zonghao Chen
Yee Whye Teh
Y. Gal
80
39
0
28 Dec 2023
A Kronecker product accelerated efficient sparse Gaussian Process
  (E-SGP) for flow emulation
A Kronecker product accelerated efficient sparse Gaussian Process (E-SGP) for flow emulation
Yu Duan
M. Eaton
Michael Bluck
11
0
0
13 Dec 2023
Structured Inverse-Free Natural Gradient: Memory-Efficient &
  Numerically-Stable KFAC
Structured Inverse-Free Natural Gradient: Memory-Efficient & Numerically-Stable KFAC
Wu Lin
Felix Dangel
Runa Eschenhagen
Kirill Neklyudov
Agustinus Kristiadi
Richard E. Turner
Alireza Makhzani
22
3
0
09 Dec 2023
Perspectives on the State and Future of Deep Learning - 2023
Perspectives on the State and Future of Deep Learning - 2023
Micah Goldblum
A. Anandkumar
Richard Baraniuk
Tom Goldstein
Kyunghyun Cho
Zachary Chase Lipton
Melanie Mitchell
Preetum Nakkiran
Max Welling
Andrew Gordon Wilson
53
4
0
07 Dec 2023
Bootstrap Your Own Variance
Bootstrap Your Own Variance
Polina Turishcheva
Jason Ramapuram
Sinead Williamson
Dan Busbridge
Eeshan Gunesh Dhekane
Russ Webb
UQCV
21
0
0
06 Dec 2023
Uncertainty in Graph Contrastive Learning with Bayesian Neural Networks
Uncertainty in Graph Contrastive Learning with Bayesian Neural Networks
Alexander M¨ollers
Alexander Immer
Elvin Isufi
Vincent Fortuin
SSL
BDL
UQCV
21
1
0
30 Nov 2023
Uncertainty Estimation on Sequential Labeling via Uncertainty
  Transmission
Uncertainty Estimation on Sequential Labeling via Uncertainty Transmission
Jianfeng He
Linlin Yu
Shuo Lei
Chang-Tien Lu
Feng Chen
UQLM
20
8
0
15 Nov 2023
Model Merging by Uncertainty-Based Gradient Matching
Model Merging by Uncertainty-Based Gradient Matching
Nico Daheim
Thomas Möllenhoff
E. Ponti
Iryna Gurevych
Mohammad Emtiyaz Khan
MoMe
FedML
32
43
0
19 Oct 2023
On permutation symmetries in Bayesian neural network posteriors: a
  variational perspective
On permutation symmetries in Bayesian neural network posteriors: a variational perspective
Simone Rossi
Ankit Singh
T. Hannagan
24
2
0
16 Oct 2023
Implicit Variational Inference for High-Dimensional Posteriors
Implicit Variational Inference for High-Dimensional Posteriors
Anshuk Uppal
Kristoffer Stensbo-Smidt
Wouter Boomsma
J. Frellsen
BDL
15
1
0
10 Oct 2023
A review of uncertainty quantification in medical image analysis:
  probabilistic and non-probabilistic methods
A review of uncertainty quantification in medical image analysis: probabilistic and non-probabilistic methods
Ling Huang
S. Ruan
Yucheng Xing
Mengling Feng
33
20
0
09 Oct 2023
A Primer on Bayesian Neural Networks: Review and Debates
A Primer on Bayesian Neural Networks: Review and Debates
Federico Danieli
Konstantinos Pitas
M. Vladimirova
Vincent Fortuin
BDL
AAML
56
18
0
28 Sep 2023
Context-Aware Generative Models for Prediction of Aircraft Ground Tracks
Context-Aware Generative Models for Prediction of Aircraft Ground Tracks
Nick Pepper
George De Ath
Marc Thomas
Richard Everson
T. Dodwell
27
0
0
26 Sep 2023
Improving Transferability of Adversarial Examples via Bayesian Attacks
Improving Transferability of Adversarial Examples via Bayesian Attacks
Qizhang Li
Yiwen Guo
Xiaochen Yang
W. Zuo
Hao Chen
AAML
BDL
26
2
0
21 Jul 2023
Adversarial Robustness Certification for Bayesian Neural Networks
Adversarial Robustness Certification for Bayesian Neural Networks
Matthew Wicker
A. Patané
Luca Laurenti
Marta Z. Kwiatkowska
AAML
23
3
0
23 Jun 2023
Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep
  Learning under Distribution Shift
Beyond Deep Ensembles: A Large-Scale Evaluation of Bayesian Deep Learning under Distribution Shift
Florian Seligmann
P. Becker
Michael Volpp
Gerhard Neumann
UQCV
19
14
0
21 Jun 2023
BNN-DP: Robustness Certification of Bayesian Neural Networks via Dynamic
  Programming
BNN-DP: Robustness Certification of Bayesian Neural Networks via Dynamic Programming
Steven Adams
A. Patané
Morteza Lahijanian
Luca Laurenti
AAML
84
7
0
19 Jun 2023
BeliefPPG: Uncertainty-aware Heart Rate Estimation from PPG signals via
  Belief Propagation
BeliefPPG: Uncertainty-aware Heart Rate Estimation from PPG signals via Belief Propagation
Valentin Bieri
Paul Streli
B. U. Demirel
Christian Holz
16
8
0
13 Jun 2023
Improving Neural Additive Models with Bayesian Principles
Improving Neural Additive Models with Bayesian Principles
Kouroche Bouchiat
Alexander Immer
Hugo Yèche
Gunnar Rätsch
Vincent Fortuin
BDL
MedIm
28
6
0
26 May 2023
Uncertainty Quantification in Machine Learning for Engineering Design
  and Health Prognostics: A Tutorial
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
30
75
0
07 May 2023
Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization
Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Vincent Fortuin
BDL
UQCV
15
8
0
17 Apr 2023
1234
Next