Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1906.02506
Cited By
Practical Deep Learning with Bayesian Principles
6 June 2019
Kazuki Osawa
S. Swaroop
Anirudh Jain
Runa Eschenhagen
Richard Turner
Rio Yokota
Mohammad Emtiyaz Khan
BDL
UQCV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Practical Deep Learning with Bayesian Principles"
24 / 174 papers shown
Title
Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors
Michael W. Dusenberry
Ghassen Jerfel
Yeming Wen
Yi-An Ma
Jasper Snoek
Katherine A. Heller
Balaji Lakshminarayanan
Dustin Tran
UQCV
BDL
31
207
0
14 May 2020
Continual Deep Learning by Functional Regularisation of Memorable Past
Pingbo Pan
S. Swaroop
Alexander Immer
Runa Eschenhagen
Richard Turner
Mohammad Emtiyaz Khan
KELM
CLL
6
139
0
29 Apr 2020
Practical calibration of the temperature parameter in Gibbs posteriors
Lucie Perrotta
6
3
0
22 Apr 2020
Tractable Approximate Gaussian Inference for Bayesian Neural Networks
J. Goulet
L. Nguyen
Saeid Amiri
BDL
6
18
0
20 Apr 2020
A comprehensive study on the prediction reliability of graph neural networks for virtual screening
Soojung Yang
K. Lee
Seongok Ryu
19
7
0
17 Mar 2020
Training Binary Neural Networks using the Bayesian Learning Rule
Xiangming Meng
Roman Bachmann
Mohammad Emtiyaz Khan
BDL
MQ
30
40
0
25 Feb 2020
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Wu Lin
Mark W. Schmidt
Mohammad Emtiyaz Khan
BDL
37
35
0
24 Feb 2020
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCV
BDL
25
58
0
19 Feb 2020
Scalable and Practical Natural Gradient for Large-Scale Deep Learning
Kazuki Osawa
Yohei Tsuji
Yuichiro Ueno
Akira Naruse
Chuan-Sheng Foo
Rio Yokota
31
36
0
13 Feb 2020
The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks
J. Swiatkowski
Kevin Roth
Bastiaan S. Veeling
Linh-Tam Tran
Joshua V. Dillon
Jasper Snoek
Stephan Mandt
Tim Salimans
Rodolphe Jenatton
Sebastian Nowozin
BDL
23
45
0
07 Feb 2020
Bayesian Tensor Network with Polynomial Complexity for Probabilistic Machine Learning
Shi-Ju Ran
8
6
0
30 Dec 2019
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection
Erik A. Daxberger
José Miguel Hernández-Lobato
UQCV
18
63
0
11 Dec 2019
Hierarchical Indian Buffet Neural Networks for Bayesian Continual Learning
Samuel Kessler
Vu Nguyen
S. Zohren
Stephen J. Roberts
BDL
8
23
0
04 Dec 2019
Measuring Uncertainty through Bayesian Learning of Deep Neural Network Structure
Zhijie Deng
Yucen Luo
Jun Zhu
Bo Zhang
UQCV
BDL
19
2
0
22 Nov 2019
Entropy from Machine Learning
R. Janik
14
5
0
24 Sep 2019
Convergence Rates of Variational Inference in Sparse Deep Learning
Badr-Eddine Chérief-Abdellatif
BDL
6
38
0
09 Aug 2019
Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale Bayesian Deep Learning
Sebastian Farquhar
Michael A. Osborne
Y. Gal
UQCV
BDL
21
57
0
01 Jul 2019
Approximate Inference Turns Deep Networks into Gaussian Processes
Mohammad Emtiyaz Khan
Alexander Immer
Ehsan Abedi
M. Korzepa
UQCV
BDL
25
122
0
05 Jun 2019
Bayesian Image Classification with Deep Convolutional Gaussian Processes
Vincent Dutordoir
Mark van der Wilk
A. Artemev
J. Hensman
UQCV
BDL
16
32
0
15 Feb 2019
Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam
Mohammad Emtiyaz Khan
Didrik Nielsen
Voot Tangkaratt
Wu Lin
Y. Gal
Akash Srivastava
ODL
74
266
0
13 Jun 2018
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
65
171
0
08 Jul 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Efficient Per-Example Gradient Computations
Ian Goodfellow
186
74
0
07 Oct 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
Previous
1
2
3
4