Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.00995
Cited By
Invertible Residual Networks
2 November 2018
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
David Duvenaud
J. Jacobsen
UQCV
TPM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Invertible Residual Networks"
50 / 153 papers shown
Title
EBMs Trained with Maximum Likelihood are Generator Models Trained with a Self-adverserial Loss
Zhisheng Xiao
Qing Yan
Y. Amit
32
2
0
23 Feb 2021
Momentum Residual Neural Networks
Michael E. Sander
Pierre Ablin
Mathieu Blondel
Gabriel Peyré
27
57
0
15 Feb 2021
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
19
7
0
12 Feb 2021
MALI: A memory efficient and reverse accurate integrator for Neural ODEs
Juntang Zhuang
Nicha Dvornek
S. Tatikonda
James S. Duncan
27
49
0
09 Feb 2021
Exploring Adversarial Examples via Invertible Neural Networks
Ruqi Bai
S. Bagchi
David I. Inouye
AAML
27
2
0
24 Dec 2020
A case for new neural network smoothness constraints
Mihaela Rosca
T. Weber
Arthur Gretton
S. Mohamed
AAML
35
48
0
14 Dec 2020
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
95
0
10 Dec 2020
Feature Space Singularity for Out-of-Distribution Detection
Haiwen Huang
Zhihan Li
Lulu Wang
Sishuo Chen
Bin Dong
Xinyu Zhou
OODD
22
65
0
30 Nov 2020
Score-Based Generative Modeling through Stochastic Differential Equations
Yang Song
Jascha Narain Sohl-Dickstein
Diederik P. Kingma
Abhishek Kumar
Stefano Ermon
Ben Poole
DiffM
SyDa
81
6,113
0
26 Nov 2020
Self Normalizing Flows
Thomas Anderson Keller
Jorn W. T. Peters
P. Jaini
Emiel Hoogeboom
Patrick Forré
Max Welling
30
14
0
14 Nov 2020
On Attribution of Deepfakes
Baiwu Zhang
Jin Peng Zhou
Ilia Shumailov
Nicolas Papernot
WIGM
32
11
0
20 Aug 2020
Adversarial Training Reduces Information and Improves Transferability
M. Terzi
Alessandro Achille
Marco Maggipinto
Gian Antonio Susto
AAML
24
23
0
22 Jul 2020
Discrete Point Flow Networks for Efficient Point Cloud Generation
Roman Klokov
Edmond Boyer
Jakob Verbeek
3DPC
26
107
0
20 Jul 2020
A Systematic Survey on Deep Generative Models for Graph Generation
Xiaojie Guo
Liang Zhao
MedIm
46
147
0
13 Jul 2020
Relative gradient optimization of the Jacobian term in unsupervised deep learning
Luigi Gresele
G. Fissore
Adrián Javaloy
Bernhard Schölkopf
Aapo Hyvarinen
DRL
19
22
0
26 Jun 2020
SRFlow: Learning the Super-Resolution Space with Normalizing Flow
Andreas Lugmayr
Martin Danelljan
Luc Van Gool
Radu Timofte
SupR
DRL
23
356
0
25 Jun 2020
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCV
BDL
37
437
0
17 Jun 2020
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
Jens Behrmann
Paul Vicol
Kuan-Chieh Jackson Wang
Roger C. Grosse
J. Jacobsen
23
93
0
16 Jun 2020
The Lipschitz Constant of Self-Attention
Hyunjik Kim
George Papamakarios
A. Mnih
14
135
0
08 Jun 2020
The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom
Victor Garcia Satorras
Jakub M. Tomczak
Max Welling
27
28
0
02 Jun 2020
Invertible Image Rescaling
Mingqing Xiao
Shuxin Zheng
Chang-Shu Liu
Yaolong Wang
Di He
Guolin Ke
Jiang Bian
Zhouchen Lin
Tie-Yan Liu
SupR
33
234
0
12 May 2020
Parameterizing uncertainty by deep invertible networks, an application to reservoir characterization
G. Rizzuti
Ali Siahkoohi
Philipp A. Witte
Felix J. Herrmann
UQCV
33
20
0
16 Apr 2020
Hybrid Models for Open Set Recognition
Hongjie Zhang
Ang Li
Jie Guo
Yanwen Guo
BDL
28
184
0
27 Mar 2020
On Feature Normalization and Data Augmentation
Boyi Li
Felix Wu
Ser-Nam Lim
Serge J. Belongie
Kilian Q. Weinberger
21
134
0
25 Feb 2020
Stochastic Latent Residual Video Prediction
Jean-Yves Franceschi
E. Delasalles
Mickaël Chen
Sylvain Lamprier
Patrick Gallinari
VGen
28
159
0
21 Feb 2020
Deep Gaussian Markov Random Fields
Per Sidén
Fredrik Lindsten
BDL
28
22
0
18 Feb 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
31
87
0
17 Feb 2020
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
57
176
0
16 Feb 2020
Latent Normalizing Flows for Many-to-Many Cross-Domain Mappings
Shweta Mahajan
Iryna Gurevych
Stefan Roth
DRL
21
36
0
16 Feb 2020
How to train your neural ODE: the world of Jacobian and kinetic regularization
Chris Finlay
J. Jacobsen
L. Nurbekyan
Adam M. Oberman
11
296
0
07 Feb 2020
SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems
Pengzhan Jin
Zhen Zhang
Aiqing Zhu
Yifa Tang
George Karniadakis
21
21
0
11 Jan 2020
Semi-Supervised Learning with Normalizing Flows
Pavel Izmailov
Polina Kirichenko
Marc Finzi
A. Wilson
DRL
BDL
40
111
0
30 Dec 2019
Getting Topology and Point Cloud Generation to Mesh
Austin Dill
Chun-Liang Li
Songwei Ge
Eunsu Kang
3DPC
25
3
0
08 Dec 2019
Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One
Will Grathwohl
Kuan-Chieh Jackson Wang
J. Jacobsen
David Duvenaud
Mohammad Norouzi
Kevin Swersky
VLM
43
528
0
06 Dec 2019
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
59
1,631
0
05 Dec 2019
Learning Multi-layer Latent Variable Model via Variational Optimization of Short Run MCMC for Approximate Inference
Erik Nijkamp
Bo Pang
Tian Han
Linqi Zhou
Song-Chun Zhu
Ying Nian Wu
BDL
DRL
19
2
0
04 Dec 2019
FIS-GAN: GAN with Flow-based Importance Sampling
Shiyu Yi
Donglin Zhan
Wenqing Zhang
Zhengyang Geng
Kang An
Hao Wang
GAN
24
3
0
06 Oct 2019
Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows
R. Cornish
Anthony L. Caterini
George Deligiannidis
Arnaud Doucet
22
2
0
30 Sep 2019
GResNet: Graph Residual Network for Reviving Deep GNNs from Suspended Animation
Jiawei Zhang
Lin Meng
21
52
0
12 Sep 2019
Conditional Flow Variational Autoencoders for Structured Sequence Prediction
Apratim Bhattacharyya
M. Hanselmann
Mario Fritz
Bernt Schiele
C. Straehle
BDL
DRL
AI4TS
27
84
0
24 Aug 2019
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
27
8
0
10 Jun 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
29
1,658
0
06 Jun 2019
Adversarial Robustness as a Prior for Learned Representations
Logan Engstrom
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Brandon Tran
A. Madry
OOD
AAML
27
63
0
03 Jun 2019
HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference
Jakob Kruse
Gianluca Detommaso
Ullrich Kothe
Robert Scheichl
13
45
0
25 May 2019
Fast Flow Reconstruction via Robust Invertible nxn Convolution
Thanh-Dat Truong
Khoa Luu
C. Duong
Ngan Le
M. Tran
19
7
0
24 May 2019
Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model
Erik Nijkamp
Mitch Hill
Song-Chun Zhu
Ying Nian Wu
29
209
0
22 Apr 2019
Exploiting Excessive Invariance caused by Norm-Bounded Adversarial Robustness
J. Jacobsen
Jens Behrmann
Nicholas Carlini
Florian Tramèr
Nicolas Papernot
AAML
24
46
0
25 Mar 2019
Revisiting Self-Supervised Visual Representation Learning
Alexander Kolesnikov
Xiaohua Zhai
Lucas Beyer
SSL
53
715
0
25 Jan 2019
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
306
10,378
0
12 Dec 2018
Spread Divergence
Mingtian Zhang
Peter Hayes
Thomas Bird
Raza Habib
David Barber
MedIm
UD
30
20
0
21 Nov 2018
Previous
1
2
3
4
Next