ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.00995
  4. Cited By
Invertible Residual Networks

Invertible Residual Networks

2 November 2018
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
David Duvenaud
J. Jacobsen
    UQCV
    TPM
ArXivPDFHTML

Papers citing "Invertible Residual Networks"

50 / 144 papers shown
Title
Verifying the Union of Manifolds Hypothesis for Image Data
Verifying the Union of Manifolds Hypothesis for Image Data
Bradley Brown
Anthony L. Caterini
Brendan Leigh Ross
Jesse C. Cresswell
G. Loaiza-Ganem
39
39
0
06 Jul 2022
Neural Surface Reconstruction of Dynamic Scenes with Monocular RGB-D
  Camera
Neural Surface Reconstruction of Dynamic Scenes with Monocular RGB-D Camera
Hongrui Cai
Wanquan Feng
Xuetao Feng
Yan Wang
Juyong Zhang
3DH
24
62
0
30 Jun 2022
RevBiFPN: The Fully Reversible Bidirectional Feature Pyramid Network
RevBiFPN: The Fully Reversible Bidirectional Feature Pyramid Network
Vitaliy Chiley
Vithursan Thangarasa
Abhay Gupta
Anshul Samar
Joel Hestness
D. DeCoste
52
8
0
28 Jun 2022
Invertible Sharpening Network for MRI Reconstruction Enhancement
Invertible Sharpening Network for MRI Reconstruction Enhancement
Siyuan Dong
Eric Z. Chen
Lin Zhao
Xiao Chen
Yikang Liu
Terrence Chen
Shanhui Sun
37
5
0
06 Jun 2022
On the Privacy Properties of GAN-generated Samples
On the Privacy Properties of GAN-generated Samples
Zinan Lin
Vyas Sekar
Giulia Fanti
PICV
24
26
0
03 Jun 2022
Entangled Residual Mappings
Entangled Residual Mappings
Mathias Lechner
Ramin Hasani
Z. Babaiee
Radu Grosu
Daniela Rus
T. Henzinger
Sepp Hochreiter
14
5
0
02 Jun 2022
Invertible Neural Networks for Graph Prediction
Invertible Neural Networks for Graph Prediction
Chen Xu
Xiuyuan Cheng
Yao Xie
GNN
28
9
0
02 Jun 2022
Flowification: Everything is a Normalizing Flow
Flowification: Everything is a Normalizing Flow
Bálint Máté
Samuel Klein
T. Golling
Franccois Fleuret
23
3
0
30 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
26
48
0
01 May 2022
SIReN-VAE: Leveraging Flows and Amortized Inference for Bayesian
  Networks
SIReN-VAE: Leveraging Flows and Amortized Inference for Bayesian Networks
Jacobie Mouton
Steve Kroon
DRL
BDL
20
0
0
23 Apr 2022
CaDeX: Learning Canonical Deformation Coordinate Space for Dynamic
  Surface Representation via Neural Homeomorphism
CaDeX: Learning Canonical Deformation Coordinate Space for Dynamic Surface Representation via Neural Homeomorphism
Jiahui Lei
Kostas Daniilidis
36
53
0
30 Mar 2022
Deep Koopman Operator with Control for Nonlinear Systems
Deep Koopman Operator with Control for Nonlinear Systems
Hao-bin Shi
Max Q.-H. Meng
17
75
0
16 Feb 2022
Global Optimization Networks
Global Optimization Networks
Sen Zhao
Erez Louidor Ilan
Oleksandr Mangylov
Maya R. Gupta
29
5
0
02 Feb 2022
FedComm: Federated Learning as a Medium for Covert Communication
FedComm: Federated Learning as a Medium for Covert Communication
Dorjan Hitaj
Giulio Pagnotta
Briland Hitaj
Fernando Perez-Cruz
L. Mancini
FedML
32
10
0
21 Jan 2022
$m^\ast$ of two-dimensional electron gas: a neural canonical
  transformation study
m∗m^\astm∗ of two-dimensional electron gas: a neural canonical transformation study
H.-j. Xie
Linfeng Zhang
Lei Wang
36
8
0
10 Jan 2022
A Compact Neural Network-based Algorithm for Robust Image Watermarking
A Compact Neural Network-based Algorithm for Robust Image Watermarking
Hongcai Xu
Rong Wang
Jia Wei
Shao-Ping Lu
27
13
0
27 Dec 2021
Interpolated Joint Space Adversarial Training for Robust and
  Generalizable Defenses
Interpolated Joint Space Adversarial Training for Robust and Generalizable Defenses
Chun Pong Lau
Jiang-Long Liu
Hossein Souri
Wei-An Lin
S. Feizi
Ramalingam Chellappa
AAML
29
12
0
12 Dec 2021
Decomposing Representations for Deterministic Uncertainty Estimation
Decomposing Representations for Deterministic Uncertainty Estimation
Haiwen Huang
Joost R. van Amersfoort
Y. Gal
UQCV
OOD
UD
32
1
0
01 Dec 2021
Forward Operator Estimation in Generative Models with Kernel Transfer
  Operators
Forward Operator Estimation in Generative Models with Kernel Transfer Operators
Z. Huang
Rudrasis Chakraborty
Vikas Singh
GAN
16
3
0
01 Dec 2021
Characteristic Neural Ordinary Differential Equations
Characteristic Neural Ordinary Differential Equations
Xingzi Xu
Ali Hasan
Khalil Elkhalil
Jie Ding
Vahid Tarokh
BDL
29
3
0
25 Nov 2021
Generalized Normalizing Flows via Markov Chains
Generalized Normalizing Flows via Markov Chains
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDL
DiffM
AI4CE
30
22
0
24 Nov 2021
On Training Implicit Models
On Training Implicit Models
Zhengyang Geng
Xinyu Zhang
Shaojie Bai
Yisen Wang
Zhouchen Lin
72
69
0
09 Nov 2021
Constructing Neural Network-Based Models for Simulating Dynamical
  Systems
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINN
AI4CE
33
93
0
02 Nov 2021
Resampling Base Distributions of Normalizing Flows
Resampling Base Distributions of Normalizing Flows
Vincent Stimper
Bernhard Schölkopf
José Miguel Hernández-Lobato
BDL
30
32
0
29 Oct 2021
Neural Flows: Efficient Alternative to Neural ODEs
Neural Flows: Efficient Alternative to Neural ODEs
Marin Bilovs
Johanna Sommer
Syama Sundar Rangapuram
Tim Januschowski
Stephan Günnemann
AI4TS
33
70
0
25 Oct 2021
Sinkformers: Transformers with Doubly Stochastic Attention
Sinkformers: Transformers with Doubly Stochastic Attention
Michael E. Sander
Pierre Ablin
Mathieu Blondel
Gabriel Peyré
32
77
0
22 Oct 2021
PixelPyramids: Exact Inference Models from Lossless Image Pyramids
PixelPyramids: Exact Inference Models from Lossless Image Pyramids
Shweta Mahajan
Stefan Roth
TPM
12
2
0
17 Oct 2021
Deep Classifiers with Label Noise Modeling and Distance Awareness
Deep Classifiers with Label Noise Modeling and Distance Awareness
Vincent Fortuin
Mark Collier
F. Wenzel
J. Allingham
J. Liu
Dustin Tran
Balaji Lakshminarayanan
Jesse Berent
Rodolphe Jenatton
E. Kokiopoulou
UQCV
34
11
0
06 Oct 2021
Manifold-preserved GANs
Manifold-preserved GANs
Haozhe Liu
Hanbang Liang
Xianxu Hou
Haoqian Wu
Feng Liu
Linlin Shen
52
5
0
18 Sep 2021
Deep Generative Modeling for Protein Design
Deep Generative Modeling for Protein Design
Alexey Strokach
Philip M. Kim
AI4CE
179
90
0
31 Aug 2021
m-RevNet: Deep Reversible Neural Networks with Momentum
Duo Li
Shangqi Gao
36
5
0
12 Aug 2021
Reachability Analysis of Neural Feedback Loops
Reachability Analysis of Neural Feedback Loops
M. Everett
Golnaz Habibi
Chuangchuang Sun
Jonathan P. How
19
53
0
09 Aug 2021
Boundary of Distribution Support Generator (BDSG): Sample Generation on
  the Boundary
Boundary of Distribution Support Generator (BDSG): Sample Generation on the Boundary
Nikolaos Dionelis
Mehrdad Yaghoobi
Sotirios A. Tsaftaris
18
12
0
21 Jul 2021
Featurized Density Ratio Estimation
Featurized Density Ratio Estimation
Kristy Choi
Madeline Liao
Stefano Ermon
TPM
22
22
0
05 Jul 2021
Task-agnostic Continual Learning with Hybrid Probabilistic Models
Task-agnostic Continual Learning with Hybrid Probabilistic Models
Polina Kirichenko
Mehrdad Farajtabar
Dushyant Rao
Balaji Lakshminarayanan
Nir Levine
Ang Li
Huiyi Hu
A. Wilson
Razvan Pascanu
VLM
BDL
CLL
27
19
0
24 Jun 2021
Feature Alignment as a Generative Process
Feature Alignment as a Generative Process
T. S. Farias
Jonas Maziero
DiffM
BDL
21
1
0
23 Jun 2021
Approximation capabilities of measure-preserving neural networks
Approximation capabilities of measure-preserving neural networks
Aiqing Zhu
Pengzhan Jin
Yifa Tang
29
8
0
21 Jun 2021
Deep Generative Learning via Schrödinger Bridge
Deep Generative Learning via Schrödinger Bridge
Gefei Wang
Yuling Jiao
Qiang Xu
Yang Wang
Can Yang
DiffM
OT
23
92
0
19 Jun 2021
Memory-Efficient Differentiable Transformer Architecture Search
Memory-Efficient Differentiable Transformer Architecture Search
Yuekai Zhao
Li Dong
Yelong Shen
Zhihua Zhang
Furu Wei
Weizhu Chen
ViT
30
17
0
31 May 2021
Efficient and Accurate Gradients for Neural SDEs
Efficient and Accurate Gradients for Neural SDEs
Patrick Kidger
James Foster
Xuechen Li
Terry Lyons
DiffM
24
60
0
27 May 2021
PointLIE: Locally Invertible Embedding for Point Cloud Sampling and
  Recovery
PointLIE: Locally Invertible Embedding for Point Cloud Sampling and Recovery
Weibing Zhao
Xu Yan
Jiantao Gao
Ruimao Zhang
Jiayan Zhang
Zhen Li
Song Wu
Shuguang Cui
3DPC
18
7
0
30 Apr 2021
Invertible Denoising Network: A Light Solution for Real Noise Removal
Invertible Denoising Network: A Light Solution for Real Noise Removal
Yang Liu
Zhenyue Qin
Saeed Anwar
Pan Ji
Dongwoo Kim
Sabrina Caldwell
Tom Gedeon
83
143
0
21 Apr 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
41
481
0
08 Mar 2021
EBMs Trained with Maximum Likelihood are Generator Models Trained with a
  Self-adverserial Loss
EBMs Trained with Maximum Likelihood are Generator Models Trained with a Self-adverserial Loss
Zhisheng Xiao
Qing Yan
Y. Amit
32
2
0
23 Feb 2021
Momentum Residual Neural Networks
Momentum Residual Neural Networks
Michael E. Sander
Pierre Ablin
Mathieu Blondel
Gabriel Peyré
27
57
0
15 Feb 2021
Jacobian Determinant of Normalizing Flows
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
19
7
0
12 Feb 2021
MALI: A memory efficient and reverse accurate integrator for Neural ODEs
MALI: A memory efficient and reverse accurate integrator for Neural ODEs
Juntang Zhuang
Nicha Dvornek
S. Tatikonda
James S. Duncan
27
49
0
09 Feb 2021
Exploring Adversarial Examples via Invertible Neural Networks
Exploring Adversarial Examples via Invertible Neural Networks
Ruqi Bai
S. Bagchi
David I. Inouye
AAML
22
2
0
24 Dec 2020
A case for new neural network smoothness constraints
A case for new neural network smoothness constraints
Mihaela Rosca
T. Weber
Arthur Gretton
S. Mohamed
AAML
35
48
0
14 Dec 2020
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
95
0
10 Dec 2020
Previous
123
Next