Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1809.10188
Cited By
Monge-Ampère Flow for Generative Modeling
26 September 2018
Linfeng Zhang
E. Weinan
Lei Wang
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Monge-Ampère Flow for Generative Modeling"
47 / 47 papers shown
Title
Accurate and thermodynamically consistent hydrogen equation of state for planetary modeling with flow matching
Hao Xie
Saburo Howard
Guglielmo Mazzola
41
1
0
17 Jan 2025
How Discrete and Continuous Diffusion Meet: Comprehensive Analysis of Discrete Diffusion Models via a Stochastic Integral Framework
Yinuo Ren
Haoxuan Chen
Grant M. Rotskoff
Lexing Ying
52
3
0
04 Oct 2024
Gaussian Interpolation Flows
Yuan Gao
Jianxia Huang
Yuling Jiao
AI4CE
25
2
0
20 Nov 2023
PINF: Continuous Normalizing Flows for Physics-Constrained Deep Learning
Feng Liu
Faguo Wu
Xiao Zhang
AI4CE
21
2
0
26 Sep 2023
Stochastic Interpolants: A Unifying Framework for Flows and Diffusions
M. S. Albergo
Nicholas M. Boffi
Eric Vanden-Eijnden
DiffM
257
268
0
15 Mar 2023
Normalizing flow neural networks by JKO scheme
Chen Xu
Xiuyuan Cheng
Yao Xie
39
24
0
29 Dec 2022
A Mathematical Framework for Learning Probability Distributions
Hongkang Yang
31
7
0
22 Dec 2022
High-dimensional density estimation with tensorizing flow
Yinuo Ren
Hongli Zhao
Y. Khoo
Lexing Ying
10
9
0
01 Dec 2022
Taming Hyperparameter Tuning in Continuous Normalizing Flows Using the JKO Scheme
Alexander Vidal
Samy Wu Fung
Luis Tenorio
Stanley Osher
L. Nurbekyan
35
15
0
30 Nov 2022
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
32
33
0
14 Nov 2022
Turning Normalizing Flows into Monge Maps with Geodesic Gaussian Preserving Flows
G. Morel
Lucas Drumetz
Simon Benaïchouche
Nicolas Courty
F. Rousseau
OT
30
6
0
22 Sep 2022
Deep Variational Free Energy Approach to Dense Hydrogen
H.-j. Xie
Ziqun Li
Han Wang
Linfeng Zhang
Lei Wang
47
9
0
13 Sep 2022
Multisymplectic Formulation of Deep Learning Using Mean--Field Type Control and Nonlinear Stability of Training Algorithm
Nader Ganaba
16
0
0
07 Jul 2022
Characteristic Neural Ordinary Differential Equations
Xingzi Xu
Ali Hasan
Khalil Elkhalil
Jie Ding
Vahid Tarokh
BDL
29
3
0
25 Nov 2021
Augmented KRnet for density estimation and approximation
Xiaoliang Wan
Keju Tang
17
5
0
26 May 2021
Ab-initio study of interacting fermions at finite temperature with neural canonical transformation
Hao Xie
Linfeng Zhang
Lei Wang
20
26
0
18 May 2021
Adaptive deep density approximation for Fokker-Planck equations
Keju Tang
Xiaoliang Wan
Qifeng Liao
31
37
0
20 Mar 2021
An Introduction to Deep Generative Modeling
Lars Ruthotto
E. Haber
AI4CE
33
220
0
09 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
41
483
0
08 Mar 2021
EBMs Trained with Maximum Likelihood are Generator Models Trained with a Self-adverserial Loss
Zhisheng Xiao
Qing Yan
Y. Amit
32
2
0
23 Feb 2021
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
19
7
0
12 Feb 2021
Generative Learning With Euler Particle Transport
Yuan Gao
Jian Huang
Yuling Jiao
Jin Liu
Xiliang Lu
J. Yang
OT
28
2
0
11 Dec 2020
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
95
0
10 Dec 2020
Generalization and Memorization: The Bias Potential Model
Hongkang Yang
E. Weinan
25
11
0
29 Nov 2020
Training Invertible Linear Layers through Rank-One Perturbations
Andreas Krämer
Jonas Köhler
Frank Noé
16
0
0
14 Oct 2020
CaSPR: Learning Canonical Spatiotemporal Point Cloud Representations
Davis Rempe
Tolga Birdal
Yongheng Zhao
Zan Gojcic
Srinath Sridhar
Leonidas J. Guibas
3DPC
29
71
0
06 Aug 2020
VAE-KRnet and its applications to variational Bayes
Xiaoliang Wan
Shuangqing Wei
BDL
DRL
19
13
0
29 Jun 2020
Learning normalizing flows from Entropy-Kantorovich potentials
Chris Finlay
Augusto Gerolin
Adam M. Oberman
Aram-Alexandre Pooladian
33
23
0
10 Jun 2020
Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities
Jonas Köhler
Leon Klein
Frank Noé
DRL
29
259
0
03 Jun 2020
The Expressive Power of a Class of Normalizing Flow Models
Zhifeng Kong
Kamalika Chaudhuri
TPM
18
51
0
31 May 2020
OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal Transport
Derek Onken
Samy Wu Fung
Xingjian Li
Lars Ruthotto
OT
18
156
0
29 May 2020
A Triangular Network For Density Estimation
Xi-Lin Li
TPM
11
1
0
30 Apr 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
183
761
0
13 Mar 2020
Differentiable Molecular Simulations for Control and Learning
Wujie Wang
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
109
49
0
27 Feb 2020
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
57
176
0
16 Feb 2020
Learning Implicit Generative Models with Theoretical Guarantees
Yuan Gao
Jian Huang
Yuling Jiao
Jin Liu
25
7
0
07 Feb 2020
How to train your neural ODE: the world of Jacobian and kinetic regularization
Chris Finlay
J. Jacobsen
L. Nurbekyan
Adam M. Oberman
11
296
0
07 Feb 2020
Deep Learning via Dynamical Systems: An Approximation Perspective
Qianxiao Li
Ting Lin
Zuowei Shen
AI4TS
AI4CE
25
107
0
22 Dec 2019
A Machine Learning Framework for Solving High-Dimensional Mean Field Game and Mean Field Control Problems
Lars Ruthotto
Stanley Osher
Wuchen Li
L. Nurbekyan
Samy Wu Fung
AI4CE
28
214
0
04 Dec 2019
Review: Ordinary Differential Equations For Deep Learning
Xinshi Chen
AI4TS
AI4CE
20
5
0
01 Nov 2019
Neural Density Estimation and Likelihood-free Inference
George Papamakarios
BDL
DRL
24
44
0
29 Oct 2019
Neural Canonical Transformation with Symplectic Flows
Shuo-Hui Li
Chen Dong
Linfeng Zhang
Lei Wang
DRL
34
28
0
30 Sep 2019
On the Need for Topology-Aware Generative Models for Manifold-Based Defenses
Uyeong Jang
Susmit Jha
S. Jha
AAML
27
13
0
07 Sep 2019
Exponential Family Estimation via Adversarial Dynamics Embedding
Bo Dai
Ziqiang Liu
H. Dai
Niao He
Arthur Gretton
Le Song
Dale Schuurmans
18
52
0
27 Apr 2019
Particle Flow Bayes' Rule
Xinshi Chen
H. Dai
Le Song
14
9
0
02 Feb 2019
Coupling the reduced-order model and the generative model for an importance sampling estimator
Xiaoliang Wan
Shuangqing Wei
16
10
0
23 Jan 2019
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
272
2,552
0
25 Jan 2016
1