ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.10382
14
107

Deep Learning via Dynamical Systems: An Approximation Perspective

22 December 2019
Qianxiao Li
Ting Lin
Zuowei Shen
    AI4TS
    AI4CE
ArXivPDFHTML
Abstract

We build on the dynamical systems approach to deep learning, where deep residual networks are idealized as continuous-time dynamical systems, from the approximation perspective. In particular, we establish general sufficient conditions for universal approximation using continuous-time deep residual networks, which can also be understood as approximation theories in LpL^pLp using flow maps of dynamical systems. In specific cases, rates of approximation in terms of the time horizon are also established. Overall, these results reveal that composition function approximation through flow maps present a new paradigm in approximation theory and contributes to building a useful mathematical framework to investigate deep learning.

View on arXiv
Comments on this paper