ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.13233
16
44

Neural Density Estimation and Likelihood-free Inference

29 October 2019
George Papamakarios
    BDL
    DRL
ArXivPDFHTML
Abstract

I consider two problems in machine learning and statistics: the problem of estimating the joint probability density of a collection of random variables, known as density estimation, and the problem of inferring model parameters when their likelihood is intractable, known as likelihood-free inference. The contribution of the thesis is a set of new methods for addressing these problems that are based on recent advances in neural networks and deep learning.

View on arXiv
Comments on this paper