ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.03039
  4. Cited By
Glow: Generative Flow with Invertible 1x1 Convolutions

Glow: Generative Flow with Invertible 1x1 Convolutions

9 July 2018
Diederik P. Kingma
Prafulla Dhariwal
    BDL
    DRL
ArXivPDFHTML

Papers citing "Glow: Generative Flow with Invertible 1x1 Convolutions"

50 / 1,800 papers shown
Title
Generative Flows with Matrix Exponential
Generative Flows with Matrix Exponential
Chang Xiao
Ligang Liu
DRL
14
7
0
19 Jul 2020
Hybrid Discriminative-Generative Training via Contrastive Learning
Hybrid Discriminative-Generative Training via Contrastive Learning
Hao Liu
Pieter Abbeel
SSL
23
40
0
17 Jul 2020
SketchGraphs: A Large-Scale Dataset for Modeling Relational Geometry in
  Computer-Aided Design
SketchGraphs: A Large-Scale Dataset for Modeling Relational Geometry in Computer-Aided Design
Ari Seff
Yaniv Ovadia
Wenda Zhou
Ryan P. Adams
AI4CE
3DV
29
68
0
16 Jul 2020
Detecting Out-of-distribution Samples via Variational Auto-encoder with
  Reliable Uncertainty Estimation
Detecting Out-of-distribution Samples via Variational Auto-encoder with Reliable Uncertainty Estimation
Xuming Ran
Mingkun Xu
Lingrui Mei
Qi Xu
Quanying Liu
OODD
UQCV
42
51
0
16 Jul 2020
Faster Uncertainty Quantification for Inverse Problems with Conditional
  Normalizing Flows
Faster Uncertainty Quantification for Inverse Problems with Conditional Normalizing Flows
Ali Siahkoohi
G. Rizzuti
Philipp A. Witte
Felix J. Herrmann
AI4CE
19
16
0
15 Jul 2020
AdvFlow: Inconspicuous Black-box Adversarial Attacks using Normalizing
  Flows
AdvFlow: Inconspicuous Black-box Adversarial Attacks using Normalizing Flows
H. M. Dolatabadi
S. Erfani
C. Leckie
AAML
19
66
0
15 Jul 2020
Failure Modes of Variational Autoencoders and Their Effects on
  Downstream Tasks
Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
CML
DRL
32
25
0
14 Jul 2020
Lessons Learned from the Training of GANs on Artificial Datasets
Lessons Learned from the Training of GANs on Artificial Datasets
Shichang Tang
22
18
0
13 Jul 2020
Projected Latent Markov Chain Monte Carlo: Conditional Sampling of
  Normalizing Flows
Projected Latent Markov Chain Monte Carlo: Conditional Sampling of Normalizing Flows
Chris Cannella
Mohammadreza Soltani
Vahid Tarokh
BDL
31
0
0
13 Jul 2020
Quasi-Periodic WaveNet: An Autoregressive Raw Waveform Generative Model
  with Pitch-dependent Dilated Convolution Neural Network
Quasi-Periodic WaveNet: An Autoregressive Raw Waveform Generative Model with Pitch-dependent Dilated Convolution Neural Network
Yi-Chiao Wu
Tomoki Hayashi
Patrick Lumban Tobing
Kazuhiro Kobayashi
Tomoki Toda
27
18
0
11 Jul 2020
EMIXER: End-to-end Multimodal X-ray Generation via Self-supervision
EMIXER: End-to-end Multimodal X-ray Generation via Self-supervision
Siddharth Biswal
Peiye Zhuang
A. Pyrros
Nasir Siddiqui
Oluwasanmi Koyejo
Jimeng Sun
MedIm
27
5
0
10 Jul 2020
Self-Reflective Variational Autoencoder
Self-Reflective Variational Autoencoder
Ifigeneia Apostolopoulou
Elan Rosenfeld
A. Dubrawski
OOD
BDL
DRL
27
0
0
10 Jul 2020
Invertible Zero-Shot Recognition Flows
Invertible Zero-Shot Recognition Flows
Yuming Shen
Jie Qin
Lei Huang
BDL
AI4CE
19
100
0
09 Jul 2020
NVAE: A Deep Hierarchical Variational Autoencoder
NVAE: A Deep Hierarchical Variational Autoencoder
Arash Vahdat
Jan Kautz
BDL
40
895
0
08 Jul 2020
Benefiting Deep Latent Variable Models via Learning the Prior and
  Removing Latent Regularization
Benefiting Deep Latent Variable Models via Learning the Prior and Removing Latent Regularization
Rogan Morrow
Wei-Chen Chiu
DRL
26
0
0
07 Jul 2020
Efficient Learning of Generative Models via Finite-Difference Score
  Matching
Efficient Learning of Generative Models via Finite-Difference Score Matching
Tianyu Pang
Kun Xu
Chongxuan Li
Yang Song
Stefano Ermon
Jun Zhu
DiffM
31
53
0
07 Jul 2020
Gradient Origin Networks
Gradient Origin Networks
Sam Bond-Taylor
Chris G. Willcocks
BDL
DRL
15
18
0
06 Jul 2020
Black-box Adversarial Example Generation with Normalizing Flows
Black-box Adversarial Example Generation with Normalizing Flows
H. M. Dolatabadi
S. Erfani
C. Leckie
AAML
29
3
0
06 Jul 2020
Pseudo-Rehearsal for Continual Learning with Normalizing Flows
Pseudo-Rehearsal for Continual Learning with Normalizing Flows
Jary Pomponi
Simone Scardapane
A. Uncini
20
15
0
05 Jul 2020
Sliced Iterative Normalizing Flows
Sliced Iterative Normalizing Flows
B. Dai
U. Seljak
16
36
0
01 Jul 2020
VAE-KRnet and its applications to variational Bayes
VAE-KRnet and its applications to variational Bayes
Xiaoliang Wan
Shuangqing Wei
BDL
DRL
24
13
0
29 Jun 2020
Relative gradient optimization of the Jacobian term in unsupervised deep
  learning
Relative gradient optimization of the Jacobian term in unsupervised deep learning
Luigi Gresele
G. Fissore
Adrián Javaloy
Bernhard Schölkopf
Aapo Hyvarinen
DRL
19
22
0
26 Jun 2020
High Resolution Zero-Shot Domain Adaptation of Synthetically Rendered
  Face Images
High Resolution Zero-Shot Domain Adaptation of Synthetically Rendered Face Images
Stephan J. Garbin
Marek Kowalski
Matthew W. Johnson
Jamie Shotton
3DH
33
9
0
26 Jun 2020
SRFlow: Learning the Super-Resolution Space with Normalizing Flow
SRFlow: Learning the Super-Resolution Space with Normalizing Flow
Andreas Lugmayr
Martin Danelljan
Luc Van Gool
Radu Timofte
SupR
DRL
23
356
0
25 Jun 2020
Normalizing Flows Across Dimensions
Normalizing Flows Across Dimensions
Edmond Cunningham
Renos Zabounidis
Abhinav Agrawal
Ina Fiterau
Daniel Sheldon
DRL
14
26
0
23 Jun 2020
Locally Masked Convolution for Autoregressive Models
Locally Masked Convolution for Autoregressive Models
Ajay Jain
Pieter Abbeel
Deepak Pathak
DiffM
OffRL
39
31
0
22 Jun 2020
IDF++: Analyzing and Improving Integer Discrete Flows for Lossless
  Compression
IDF++: Analyzing and Improving Integer Discrete Flows for Lossless Compression
Rianne van den Berg
A. Gritsenko
Mostafa Dehghani
C. Sønderby
Tim Salimans
27
60
0
22 Jun 2020
Telescoping Density-Ratio Estimation
Telescoping Density-Ratio Estimation
Benjamin Rhodes
Kai Xu
Michael U. Gutmann
30
94
0
22 Jun 2020
Deep Residual Mixture Models
Deep Residual Mixture Models
Perttu Hämäläinen
Martin Trapp
Tuure Saloheimo
Arno Solin
36
8
0
22 Jun 2020
Modeling Lost Information in Lossy Image Compression
Modeling Lost Information in Lossy Image Compression
Yaolong Wang
Mingqing Xiao
Chang-Shu Liu
Shuxin Zheng
Tie-Yan Liu
32
23
0
22 Jun 2020
Coupling-based Invertible Neural Networks Are Universal Diffeomorphism
  Approximators
Coupling-based Invertible Neural Networks Are Universal Diffeomorphism Approximators
Takeshi Teshima
Isao Ishikawa
Koichi Tojo
Kenta Oono
Masahiro Ikeda
Masashi Sugiyama
24
110
0
20 Jun 2020
Denoising Diffusion Probabilistic Models
Denoising Diffusion Probabilistic Models
Jonathan Ho
Ajay Jain
Pieter Abbeel
DiffM
118
17,154
0
19 Jun 2020
Understanding Anomaly Detection with Deep Invertible Networks through
  Hierarchies of Distributions and Features
Understanding Anomaly Detection with Deep Invertible Networks through Hierarchies of Distributions and Features
R. Schirrmeister
Yuxuan Zhou
T. Ball
Dan Zhang
UQCV
22
88
0
18 Jun 2020
AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph
  modularity
AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity
S. Udrescu
A. Tan
Jiahai Feng
Orisvaldo Neto
Tailin Wu
Max Tegmark
25
185
0
18 Jun 2020
STEER: Simple Temporal Regularization For Neural ODEs
STEER: Simple Temporal Regularization For Neural ODEs
Arna Ghosh
Harkirat Singh Behl
Emilien Dupont
Philip Torr
Vinay P. Namboodiri
BDL
AI4TS
27
74
0
18 Jun 2020
Learning High-Resolution Domain-Specific Representations with a GAN
  Generator
Learning High-Resolution Domain-Specific Representations with a GAN Generator
Danil Galeev
Konstantin Sofiiuk
D. Rukhovich
Mikhail Romanov
O. Barinova
Anton Konushin
GAN
39
15
0
18 Jun 2020
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and
  Optimization
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization
Abhinav Agrawal
Daniel Sheldon
Justin Domke
TPM
BDL
19
38
0
18 Jun 2020
Neural Manifold Ordinary Differential Equations
Neural Manifold Ordinary Differential Equations
Aaron Lou
Derek Lim
Isay Katsman
Leo Huang
Qingxuan Jiang
Ser-Nam Lim
Christopher De Sa
BDL
AI4CE
23
79
0
18 Jun 2020
MoFlow: An Invertible Flow Model for Generating Molecular Graphs
MoFlow: An Invertible Flow Model for Generating Molecular Graphs
Chengxi Zang
Fei Wang
BDL
30
282
0
17 Jun 2020
Categorical Normalizing Flows via Continuous Transformations
Categorical Normalizing Flows via Continuous Transformations
Phillip Lippe
E. Gavves
BDL
23
43
0
17 Jun 2020
Understanding and Mitigating Exploding Inverses in Invertible Neural
  Networks
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
Jens Behrmann
Paul Vicol
Kuan-Chieh Wang
Roger C. Grosse
J. Jacobsen
23
93
0
16 Jun 2020
Density of States Estimation for Out-of-Distribution Detection
Density of States Estimation for Out-of-Distribution Detection
Warren Morningstar
Cusuh Ham
Andrew Gallagher
Balaji Lakshminarayanan
Alexander A. Alemi
Joshua V. Dillon
OODD
24
84
0
16 Jun 2020
Posterior Network: Uncertainty Estimation without OOD Samples via
  Density-Based Pseudo-Counts
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
UQCV
UD
EDL
BDL
32
169
0
16 Jun 2020
Ordering Dimensions with Nested Dropout Normalizing Flows
Ordering Dimensions with Nested Dropout Normalizing Flows
Artur Bekasov
Iain Murray
DRL
28
5
0
15 Jun 2020
Why Normalizing Flows Fail to Detect Out-of-Distribution Data
Why Normalizing Flows Fail to Detect Out-of-Distribution Data
Polina Kirichenko
Pavel Izmailov
A. Wilson
OODD
22
271
0
15 Jun 2020
Improved Conditional Flow Models for Molecule to Image Synthesis
Improved Conditional Flow Models for Molecule to Image Synthesis
Karren D. Yang
Samuel Goldman
Wengong Jin
Alex X. Lu
Regina Barzilay
Tommi Jaakkola
Caroline Uhler
MedIm
16
7
0
15 Jun 2020
Globally Injective ReLU Networks
Globally Injective ReLU Networks
Michael Puthawala
K. Kothari
Matti Lassas
Ivan Dokmanić
Maarten V. de Hoop
29
26
0
15 Jun 2020
Self-supervised Learning: Generative or Contrastive
Self-supervised Learning: Generative or Contrastive
Xiao Liu
Fanjin Zhang
Zhenyu Hou
Zhaoyu Wang
Li Mian
Jing Zhang
Jie Tang
SSL
54
1,588
0
15 Jun 2020
Exponential Tilting of Generative Models: Improving Sample Quality by
  Training and Sampling from Latent Energy
Exponential Tilting of Generative Models: Improving Sample Quality by Training and Sampling from Latent Energy
Zhisheng Xiao
Qing Yan
Y. Amit
DRL
8
8
0
15 Jun 2020
Enabling Counterfactual Survival Analysis with Balanced Representations
Enabling Counterfactual Survival Analysis with Balanced Representations
Paidamoyo Chapfuwa
Serge Assaad
Shuxi Zeng
Michael J. Pencina
Lawrence Carin
Ricardo Henao
CML
16
2
0
14 Jun 2020
Previous
123...272829...343536
Next