ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.09070
15
40

Hybrid Discriminative-Generative Training via Contrastive Learning

17 July 2020
Hao Liu
Pieter Abbeel
    SSL
ArXivPDFHTML
Abstract

Contrastive learning and supervised learning have both seen significant progress and success. However, thus far they have largely been treated as two separate objectives, brought together only by having a shared neural network. In this paper we show that through the perspective of hybrid discriminative-generative training of energy-based models we can make a direct connection between contrastive learning and supervised learning. Beyond presenting this unified view, we show our specific choice of approximation of the energy-based loss outperforms the existing practice in terms of classification accuracy of WideResNet on CIFAR-10 and CIFAR-100. It also leads to improved performance on robustness, out-of-distribution detection, and calibration.

View on arXiv
Comments on this paper