ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1807.03039
  4. Cited By
Glow: Generative Flow with Invertible 1x1 Convolutions

Glow: Generative Flow with Invertible 1x1 Convolutions

9 July 2018
Diederik P. Kingma
Prafulla Dhariwal
    BDL
    DRL
ArXivPDFHTML

Papers citing "Glow: Generative Flow with Invertible 1x1 Convolutions"

50 / 1,799 papers shown
Title
A Linear Systems Theory of Normalizing Flows
A Linear Systems Theory of Normalizing Flows
Reuben Feinman
Nikhil Parthasarathy
19
1
0
15 Jul 2019
Trust-Region Variational Inference with Gaussian Mixture Models
Trust-Region Variational Inference with Gaussian Mixture Models
Oleg Arenz
Mingjun Zhong
Gerhard Neumann
37
18
0
10 Jul 2019
Out-of-Distribution Detection Using Neural Rendering Generative Models
Out-of-Distribution Detection Using Neural Rendering Generative Models
Yujia Huang
Sihui Dai
T. Nguyen
Richard G. Baraniuk
Anima Anandkumar
OODD
17
14
0
10 Jul 2019
Large Scale Adversarial Representation Learning
Large Scale Adversarial Representation Learning
Jeff Donahue
Karen Simonyan
SSL
69
542
0
04 Jul 2019
Guided Image Generation with Conditional Invertible Neural Networks
Guided Image Generation with Conditional Invertible Neural Networks
Lynton Ardizzone
Carsten T. Lüth
Jakob Kruse
Carsten Rother
Ullrich Kothe
DRL
11
295
0
04 Jul 2019
Semi-supervised Image Attribute Editing using Generative Adversarial
  Networks
Semi-supervised Image Attribute Editing using Generative Adversarial Networks
Y. Dogan
H. Keles
GAN
10
21
0
03 Jul 2019
PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows
PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows
Guandao Yang
Xun Huang
Jinwei Gu
Ming Liu
Serge J. Belongie
Bharath Hariharan
3DPC
40
658
0
28 Jun 2019
Curriculum Learning for Deep Generative Models with Clustering
Curriculum Learning for Deep Generative Models with Clustering
Deli Zhao
Jiapeng Zhu
Zhenfang Guo
Bo Zhang
GNN
25
1
0
27 Jun 2019
Perceptual Generative Autoencoders
Perceptual Generative Autoencoders
Zijun Zhang
Ruixiang Zhang
Zongpeng Li
Yoshua Bengio
Liam Paull
DRL
GAN
25
28
0
25 Jun 2019
Disentangled Inference for GANs with Latently Invertible Autoencoder
Disentangled Inference for GANs with Latently Invertible Autoencoder
Jiapeng Zhu
Deli Zhao
Bo Zhang
Bolei Zhou
GAN
DRL
30
35
0
19 Jun 2019
Recent Advances of Image Steganography with Generative Adversarial
  Networks
Recent Advances of Image Steganography with Generative Adversarial Networks
Jia-Wei Liu
Yan Ke
Yu-Zhou Lei
Zhuo Zhang
Jun Li
Peng Luo
Minqing Zhang
Xiaoyuan Yang
GAN
40
69
0
18 Jun 2019
Parametric Resynthesis with neural vocoders
Parametric Resynthesis with neural vocoders
Soumi Maiti
Michael I. Mandel
17
19
0
16 Jun 2019
A Closer Look at Double Backpropagation
A Closer Look at Double Backpropagation
Christian Etmann
ODL
12
11
0
16 Jun 2019
Near-Optimal Glimpse Sequences for Improved Hard Attention Neural
  Network Training
Near-Optimal Glimpse Sequences for Improved Hard Attention Neural Network Training
William Harvey
Michael Teng
Frank Wood
31
4
0
13 Jun 2019
Learning Symmetries of Classical Integrable Systems
Learning Symmetries of Classical Integrable Systems
Roberto Bondesan
A. Lamacraft
22
39
0
11 Jun 2019
Quantification and Analysis of Layer-wise and Pixel-wise Information
  Discarding
Quantification and Analysis of Layer-wise and Pixel-wise Information Discarding
Haotian Ma
Hao Zhang
Fan Zhou
Yinqing Zhang
Quanshi Zhang
FAtt
16
0
0
10 Jun 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
41
745
0
10 Jun 2019
Detecting Out-of-Distribution Inputs to Deep Generative Models Using
  Typicality
Detecting Out-of-Distribution Inputs to Deep Generative Models Using Typicality
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Balaji Lakshminarayanan
OODD
14
86
0
07 Jun 2019
Likelihood Ratios for Out-of-Distribution Detection
Likelihood Ratios for Out-of-Distribution Detection
Jie Jessie Ren
Peter J. Liu
Emily Fertig
Jasper Snoek
Ryan Poplin
M. DePristo
Joshua V. Dillon
Balaji Lakshminarayanan
OODD
50
716
0
07 Jun 2019
Improving Exploration in Soft-Actor-Critic with Normalizing Flows
  Policies
Improving Exploration in Soft-Actor-Critic with Normalizing Flows Policies
Patrick Nadeem Ward
Ariella Smofsky
A. Bose
6
58
0
06 Jun 2019
Residual Flows for Invertible Generative Modeling
Residual Flows for Invertible Generative Modeling
Ricky T. Q. Chen
Jens Behrmann
David Duvenaud
J. Jacobsen
BDL
TPM
DRL
8
375
0
06 Jun 2019
Image Synthesis with a Single (Robust) Classifier
Image Synthesis with a Single (Robust) Classifier
Shibani Santurkar
Dimitris Tsipras
Brandon Tran
Andrew Ilyas
Logan Engstrom
A. Madry
AAML
14
34
0
06 Jun 2019
Style Generator Inversion for Image Enhancement and Animation
Style Generator Inversion for Image Enhancement and Animation
Aviv Gabbay
Yedid Hoshen
16
17
0
05 Jun 2019
Cubic-Spline Flows
Cubic-Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
TPM
53
57
0
05 Jun 2019
Scene Representation Networks: Continuous 3D-Structure-Aware Neural
  Scene Representations
Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations
Vincent Sitzmann
Michael Zollhoefer
Gordon Wetzstein
3DPC
3DV
80
1,267
0
04 Jun 2019
MelNet: A Generative Model for Audio in the Frequency Domain
MelNet: A Generative Model for Audio in the Frequency Domain
Sean Vasquez
M. Lewis
DiffM
27
131
0
04 Jun 2019
Understanding the Limitations of Conditional Generative Models
Understanding the Limitations of Conditional Generative Models
Ethan Fetaya
J. Jacobsen
Will Grathwohl
R. Zemel
13
53
0
04 Jun 2019
Blow: a single-scale hyperconditioned flow for non-parallel raw-audio
  voice conversion
Blow: a single-scale hyperconditioned flow for non-parallel raw-audio voice conversion
Joan Serrà
Santiago Pascual
Carlos Segura
CVBM
23
84
0
03 Jun 2019
Generating Diverse High-Fidelity Images with VQ-VAE-2
Generating Diverse High-Fidelity Images with VQ-VAE-2
Ali Razavi
Aaron van den Oord
Oriol Vinyals
DRL
BDL
39
1,774
0
02 Jun 2019
On the Necessity and Effectiveness of Learning the Prior of Variational
  Auto-Encoder
On the Necessity and Effectiveness of Learning the Prior of Variational Auto-Encoder
Haowen Xu
Wenxiao Chen
Jinlin Lai
Zhihan Li
Youjian Zhao
Dan Pei
DRL
BDL
32
14
0
31 May 2019
Structured Output Learning with Conditional Generative Flows
Structured Output Learning with Conditional Generative Flows
You Lu
Bert Huang
BDL
DRL
21
72
0
30 May 2019
One-element Batch Training by Moving Window
One-element Batch Training by Moving Window
Przemysław Spurek
Szymon Knop
Jacek Tabor
Igor T. Podolak
B. Wójcik
VLM
24
0
0
30 May 2019
AlignFlow: Cycle Consistent Learning from Multiple Domains via
  Normalizing Flows
AlignFlow: Cycle Consistent Learning from Multiple Domains via Normalizing Flows
Aditya Grover
Christopher Chute
Rui Shu
Zhangjie Cao
Stefano Ermon
OOD
DRL
13
65
0
30 May 2019
Domain Generalization via Universal Non-volume Preserving Models
Domain Generalization via Universal Non-volume Preserving Models
Thanh-Dat Truong
C. Duong
Khoa Luu
Minh-Triet Tran
Ngan Le
OOD
11
0
0
28 May 2019
Invertible generative models for inverse problems: mitigating
  representation error and dataset bias
Invertible generative models for inverse problems: mitigating representation error and dataset bias
Muhammad Asim
Max Daniels
Oscar Leong
Ali Ahmed
Paul Hand
26
146
0
28 May 2019
GraphNVP: An Invertible Flow Model for Generating Molecular Graphs
GraphNVP: An Invertible Flow Model for Generating Molecular Graphs
Kaushalya Madhawa
Katushiko Ishiguro
Kosuke Nakago
Motoki Abe
BDL
22
188
0
28 May 2019
Validation of Approximate Likelihood and Emulator Models for
  Computationally Intensive Simulations
Validation of Approximate Likelihood and Emulator Models for Computationally Intensive Simulations
Niccolò Dalmasso
Ann B. Lee
Rafael Izbicki
T. Pospisil
Ilmun Kim
Chieh-An Lin
27
8
0
27 May 2019
Kernel Conditional Density Operators
Kernel Conditional Density Operators
Ingmar Schuster
Mattes Mollenhauer
Stefan Klus
Krikamol Muandet
30
25
0
27 May 2019
Classification Accuracy Score for Conditional Generative Models
Classification Accuracy Score for Conditional Generative Models
Suman V. Ravuri
Oriol Vinyals
EGVM
27
230
0
26 May 2019
HINT: Hierarchical Invertible Neural Transport for Density Estimation
  and Bayesian Inference
HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference
Jakob Kruse
Gianluca Detommaso
Ullrich Kothe
Robert Scheichl
13
45
0
25 May 2019
Generative Latent Flow
Generative Latent Flow
Zhisheng Xiao
Qing Yan
Y. Amit
DRL
17
15
0
24 May 2019
Discrete Flows: Invertible Generative Models of Discrete Data
Discrete Flows: Invertible Generative Models of Discrete Data
Dustin Tran
Keyon Vafa
Kumar Krishna Agrawal
Laurent Dinh
Ben Poole
DRL
24
114
0
24 May 2019
Fast Flow Reconstruction via Robust Invertible nxn Convolution
Fast Flow Reconstruction via Robust Invertible nxn Convolution
Thanh-Dat Truong
Khoa Luu
C. Duong
Ngan Le
M. Tran
19
7
0
24 May 2019
Compression with Flows via Local Bits-Back Coding
Compression with Flows via Local Bits-Back Coding
Jonathan Ho
Evan Lohn
Pieter Abbeel
32
53
0
21 May 2019
Non-Autoregressive Neural Text-to-Speech
Non-Autoregressive Neural Text-to-Speech
Kainan Peng
Ming-Yu Liu
Z. Song
Kexin Zhao
29
39
0
21 May 2019
Automatic Posterior Transformation for Likelihood-Free Inference
Automatic Posterior Transformation for Likelihood-Free Inference
David S. Greenberg
M. Nonnenmacher
Jakob H. Macke
6
317
0
17 May 2019
Integer Discrete Flows and Lossless Compression
Integer Discrete Flows and Lossless Compression
Emiel Hoogeboom
Jorn W. T. Peters
Rianne van den Berg
Max Welling
30
158
0
17 May 2019
Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with
  Hierarchical Latent Variables
Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables
F. Kingma
Pieter Abbeel
Jonathan Ho
14
97
0
16 May 2019
MoGlow: Probabilistic and controllable motion synthesis using
  normalising flows
MoGlow: Probabilistic and controllable motion synthesis using normalising flows
G. Henter
Simon Alexanderson
Jonas Beskow
39
97
0
16 May 2019
DeepFlow: History Matching in the Space of Deep Generative Models
DeepFlow: History Matching in the Space of Deep Generative Models
L. Mosser
O. Dubrule
M. Blunt
35
13
0
14 May 2019
Previous
123...33343536
Next