ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2006.12063
28
8

Deep Residual Mixture Models

22 June 2020
Perttu Hämäläinen
Martin Trapp
Tuure Saloheimo
Arno Solin
ArXivPDFHTML
Abstract

We propose Deep Residual Mixture Models (DRMMs), a novel deep generative model architecture. Compared to other deep models, DRMMs allow more flexible conditional sampling: The model can be trained once with all variables, and then used for sampling with arbitrary combinations of conditioning variables, Gaussian priors, and (in)equality constraints. This provides new opportunities for interactive and exploratory machine learning, where one should minimize the user waiting for retraining a model. We demonstrate DRMMs in constrained multi-limb inverse kinematics and controllable generation of animations.

View on arXiv
Comments on this paper