ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.05649
  4. Cited By
Sylvester Normalizing Flows for Variational Inference
v1v2 (latest)

Sylvester Normalizing Flows for Variational Inference

15 March 2018
Rianne van den Berg
Leonard Hasenclever
Jakub M. Tomczak
Max Welling
    BDLDRL
ArXiv (abs)PDFHTML

Papers citing "Sylvester Normalizing Flows for Variational Inference"

50 / 161 papers shown
Title
Stochastic Normalizing Flows
Stochastic Normalizing Flows
Liam Hodgkinson
Christopher van der Heide
Fred Roosta
Michael W. Mahoney
BDL
53
1
0
21 Feb 2020
Learning Bijective Feature Maps for Linear ICA
Learning Bijective Feature Maps for Linear ICA
A. Camuto
M. Willetts
Brooks Paige
Chris Holmes
Stephen J. Roberts
46
3
0
18 Feb 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows
  and Latent Variable Models
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
110
89
0
17 Feb 2020
Stochastic Normalizing Flows
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
152
186
0
16 Feb 2020
Hypernetwork approach to generating point clouds
Hypernetwork approach to generating point clouds
Przemysław Spurek
Sebastian Winczowski
Jacek Tabor
M. Zamorski
Maciej Ziȩba
Tomasz Trzciñski
3DPC
118
34
0
10 Feb 2020
Variational Item Response Theory: Fast, Accurate, and Expressive
Variational Item Response Theory: Fast, Accurate, and Expressive
Mike Wu
R. Davis
B. Domingue
Chris Piech
Noah D. Goodman
OffRL
107
55
0
01 Feb 2020
Semi-supervised Grasp Detection by Representation Learning in a Vector
  Quantized Latent Space
Semi-supervised Grasp Detection by Representation Learning in a Vector Quantized Latent Space
Mridul Mahajan
Tryambak Bhattacharjee
Arya Krishnan
Priya Shukla
G. C. Nandi
DRLSSL
41
3
0
23 Jan 2020
The Usual Suspects? Reassessing Blame for VAE Posterior Collapse
The Usual Suspects? Reassessing Blame for VAE Posterior Collapse
Bin Dai
Ziyu Wang
David Wipf
DRL
97
76
0
23 Dec 2019
HCNAF: Hyper-Conditioned Neural Autoregressive Flow and its Application
  for Probabilistic Occupancy Map Forecasting
HCNAF: Hyper-Conditioned Neural Autoregressive Flow and its Application for Probabilistic Occupancy Map Forecasting
Geunseob Oh
Jean-Sebastien Valois
BDL
68
12
0
17 Dec 2019
Neural Networks with Cheap Differential Operators
Neural Networks with Cheap Differential Operators
Ricky T. Q. Chen
David Duvenaud
67
35
0
08 Dec 2019
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
219
1,722
0
05 Dec 2019
WaveFlow: A Compact Flow-based Model for Raw Audio
WaveFlow: A Compact Flow-based Model for Raw Audio
Ming-Yu Liu
Kainan Peng
Kexin Zhao
Z. Song
102
117
0
03 Dec 2019
Learning Likelihoods with Conditional Normalizing Flows
Learning Likelihoods with Conditional Normalizing Flows
Christina Winkler
Daniel E. Worrall
Emiel Hoogeboom
Max Welling
TPM
280
226
0
29 Nov 2019
Improving VAE generations of multimodal data through data-dependent
  conditional priors
Improving VAE generations of multimodal data through data-dependent conditional priors
Frantzeska Lavda
Magda Gregorova
Alexandros Kalousis
29
4
0
25 Nov 2019
Variational Autoencoders for Generative Modelling of Water Cherenkov
  Detectors
Variational Autoencoders for Generative Modelling of Water Cherenkov Detectors
Abhishek Abhishek
W. Fedorko
P. Perio
N. Prouse
J. Ding
DRL
19
2
0
01 Nov 2019
Neural Density Estimation and Likelihood-free Inference
Neural Density Estimation and Likelihood-free Inference
George Papamakarios
BDLDRL
100
47
0
29 Oct 2019
Unsupervised Out-of-Distribution Detection with Batch Normalization
Unsupervised Out-of-Distribution Detection with Batch Normalization
Jiaming Song
Yang Song
Stefano Ermon
OODD
69
22
0
21 Oct 2019
High Mutual Information in Representation Learning with Symmetric
  Variational Inference
High Mutual Information in Representation Learning with Symmetric Variational Inference
M. Livne
Kevin Swersky
David J. Fleet
SSLDRL
58
0
0
04 Oct 2019
Relaxing Bijectivity Constraints with Continuously Indexed Normalising
  Flows
Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows
R. Cornish
Anthony L. Caterini
George Deligiannidis
Arnaud Doucet
50
3
0
30 Sep 2019
Trivializations for Gradient-Based Optimization on Manifolds
Trivializations for Gradient-Based Optimization on Manifolds
Mario Lezcano Casado
125
128
0
20 Sep 2019
Towards Interpretable Polyphonic Transcription with Invertible Neural
  Networks
Towards Interpretable Polyphonic Transcription with Invertible Neural Networks
Rainer Kelz
Gerhard Widmer
41
15
0
04 Sep 2019
Normalizing Flows: An Introduction and Review of Current Methods
Normalizing Flows: An Introduction and Review of Current Methods
I. Kobyzev
S. Prince
Marcus A. Brubaker
TPMMedIm
100
58
0
25 Aug 2019
Conditional Flow Variational Autoencoders for Structured Sequence
  Prediction
Conditional Flow Variational Autoencoders for Structured Sequence Prediction
Apratim Bhattacharyya
M. Hanselmann
Mario Fritz
Bernt Schiele
C. Straehle
BDLDRLAI4TS
98
86
0
24 Aug 2019
Calibration of Deep Probabilistic Models with Decoupled Bayesian Neural
  Networks
Calibration of Deep Probabilistic Models with Decoupled Bayesian Neural Networks
Juan Maroñas
Roberto Paredes Palacios
D. Ramos-Castro
UQCVBDL
102
24
0
23 Aug 2019
Unconstrained Monotonic Neural Networks
Unconstrained Monotonic Neural Networks
Antoine Wehenkel
Gilles Louppe
TPM
260
150
0
14 Aug 2019
Variational Bayes on Manifolds
Variational Bayes on Manifolds
Minh-Ngoc Tran
D. Nguyen
Duy Nguyen
109
23
0
08 Aug 2019
GENESIS: Generative Scene Inference and Sampling with Object-Centric
  Latent Representations
GENESIS: Generative Scene Inference and Sampling with Object-Centric Latent Representations
Martin Engelcke
Adam R. Kosiorek
Oiwi Parker Jones
Ingmar Posner
OCL
175
308
0
30 Jul 2019
MintNet: Building Invertible Neural Networks with Masked Convolutions
MintNet: Building Invertible Neural Networks with Masked Convolutions
Yang Song
Chenlin Meng
Stefano Ermon
52
68
0
18 Jul 2019
PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows
PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows
Guandao Yang
Xun Huang
Jinwei Gu
Ming-Yuan Liu
Serge J. Belongie
Bharath Hariharan
3DPC
148
672
0
28 Jun 2019
Stochastic Neural Network with Kronecker Flow
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
67
8
0
10 Jun 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
233
778
0
10 Jun 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDLSSLDRL
134
2,384
0
06 Jun 2019
Cubic-Spline Flows
Cubic-Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
TPM
104
58
0
05 Jun 2019
On the Necessity and Effectiveness of Learning the Prior of Variational
  Auto-Encoder
On the Necessity and Effectiveness of Learning the Prior of Variational Auto-Encoder
Haowen Xu
Wenxiao Chen
Jinlin Lai
Zhihan Li
Youjian Zhao
Dan Pei
DRLBDL
84
14
0
31 May 2019
AlignFlow: Cycle Consistent Learning from Multiple Domains via
  Normalizing Flows
AlignFlow: Cycle Consistent Learning from Multiple Domains via Normalizing Flows
Aditya Grover
Christopher Chute
Rui Shu
Zhangjie Cao
Stefano Ermon
OODDRL
56
67
0
30 May 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
101
16
0
27 May 2019
Generative Latent Flow
Generative Latent Flow
Zhisheng Xiao
Qing Yan
Y. Amit
DRL
58
15
0
24 May 2019
Integer Discrete Flows and Lossless Compression
Integer Discrete Flows and Lossless Compression
Emiel Hoogeboom
Jorn W. T. Peters
Rianne van den Berg
Max Welling
165
160
0
17 May 2019
Sum-of-Squares Polynomial Flow
Sum-of-Squares Polynomial Flow
P. Jaini
Kira A. Selby
Yaoliang Yu
TPM
96
143
0
07 May 2019
Semi-Conditional Normalizing Flows for Semi-Supervised Learning
Semi-Conditional Normalizing Flows for Semi-Supervised Learning
Andrei Atanov
Alexandra Volokhova
Arsenii Ashukha
Ivan Sosnovik
Dmitry Vetrov
BDL
96
42
0
01 May 2019
Effective Estimation of Deep Generative Language Models
Effective Estimation of Deep Generative Language Models
Tom Pelsmaeker
Wilker Aziz
BDL
92
28
0
17 Apr 2019
Copula-like Variational Inference
Copula-like Variational Inference
Marcel Hirt
P. Dellaportas
Alain Durmus
38
5
0
15 Apr 2019
Block Neural Autoregressive Flow
Block Neural Autoregressive Flow
Nicola De Cao
Ivan Titov
Wilker Aziz
DRL
83
125
0
09 Apr 2019
Riemannian Normalizing Flow on Variational Wasserstein Autoencoder for
  Text Modeling
Riemannian Normalizing Flow on Variational Wasserstein Autoencoder for Text Modeling
P. Wang
William Yang Wang
DRL
95
27
0
04 Apr 2019
Generalized Variational Inference: Three arguments for deriving new
  Posteriors
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRLBDL
109
106
0
03 Apr 2019
Diagnosing and Enhancing VAE Models
Diagnosing and Enhancing VAE Models
Bin Dai
David Wipf
DRL
101
381
0
14 Mar 2019
Manifold Optimization Assisted Gaussian Variational Approximation
Manifold Optimization Assisted Gaussian Variational Approximation
Bingxin Zhou
Junbin Gao
Minh-Ngoc Tran
Richard Gerlach
67
6
0
11 Feb 2019
TzK: Flow-Based Conditional Generative Model
TzK: Flow-Based Conditional Generative Model
M. Livne
David Fleet
VLMDRLAI4CE
23
0
0
05 Feb 2019
Emerging Convolutions for Generative Normalizing Flows
Emerging Convolutions for Generative Normalizing Flows
Emiel Hoogeboom
Rianne van den Berg
Max Welling
DRL
130
98
0
30 Jan 2019
A Tutorial on Deep Latent Variable Models of Natural Language
A Tutorial on Deep Latent Variable Models of Natural Language
Yoon Kim
Sam Wiseman
Alexander M. Rush
BDLVLM
121
42
0
17 Dec 2018
Previous
1234
Next