ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.05649
  4. Cited By
Sylvester Normalizing Flows for Variational Inference
v1v2 (latest)

Sylvester Normalizing Flows for Variational Inference

15 March 2018
Rianne van den Berg
Leonard Hasenclever
Jakub M. Tomczak
Max Welling
    BDLDRL
ArXiv (abs)PDFHTML

Papers citing "Sylvester Normalizing Flows for Variational Inference"

50 / 161 papers shown
Title
Generalization of the Change of Variables Formula with Applications to
  Residual Flows
Generalization of the Change of Variables Formula with Applications to Residual Flows
Niklas Koenen
Marvin N. Wright
Peter Maass
Jens Behrmann
43
2
0
09 Jul 2021
Viscos Flows: Variational Schur Conditional Sampling With Normalizing
  Flows
Viscos Flows: Variational Schur Conditional Sampling With Normalizing Flows
Vincent Moens
Aivar Sootla
H. Ammar
Jun Wang
TPM
65
1
0
06 Jul 2021
On the Generative Utility of Cyclic Conditionals
On the Generative Utility of Cyclic Conditionals
Chang-Shu Liu
Haoyue Tang
Tao Qin
Jintao Wang
Tie-Yan Liu
82
3
0
30 Jun 2021
On Incorporating Inductive Biases into VAEs
On Incorporating Inductive Biases into VAEs
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CMLDRL
99
11
0
25 Jun 2021
Sparse Flows: Pruning Continuous-depth Models
Sparse Flows: Pruning Continuous-depth Models
Lucas Liebenwein
Ramin Hasani
Alexander Amini
Daniela Rus
116
17
0
24 Jun 2021
Distilling the Knowledge from Conditional Normalizing Flows
Distilling the Knowledge from Conditional Normalizing Flows
Dmitry Baranchuk
Vladimir Aliev
Artem Babenko
BDL
85
2
0
24 Jun 2021
Model Selection for Bayesian Autoencoders
Model Selection for Bayesian Autoencoders
Ba-Hien Tran
Simone Rossi
Dimitrios Milios
Pietro Michiardi
Edwin V. Bonilla
Maurizio Filippone
BDL
82
13
0
11 Jun 2021
The Dark Machines Anomaly Score Challenge: Benchmark Data and Model
  Independent Event Classification for the Large Hadron Collider
The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider
T. Aarrestad
M. Beekveld
M. Bona
A. Boveia
S. Caron
...
M. White
E. Wulff
E. Wallin
K. Wozniak
Z. Zhang
95
83
0
28 May 2021
Augmented KRnet for density estimation and approximation
Augmented KRnet for density estimation and approximation
Xiaoliang Wan
Keju Tang
69
5
0
26 May 2021
Universal Approximation of Residual Flows in Maximum Mean Discrepancy
Universal Approximation of Residual Flows in Maximum Mean Discrepancy
Zhifeng Kong
Kamalika Chaudhuri
UQCV
42
6
0
10 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLMTPM
176
509
0
08 Mar 2021
Structured Dropout Variational Inference for Bayesian Neural Networks
Structured Dropout Variational Inference for Bayesian Neural Networks
S. Nguyen
Duong Nguyen
Khai Nguyen
Khoat Than
Hung Bui
Nhat Ho
BDLDRL
70
8
0
16 Feb 2021
Jacobian Determinant of Normalizing Flows
Jacobian Determinant of Normalizing Flows
Huadong Liao
Jiawei He
DRL
47
8
0
12 Feb 2021
Invertible DenseNets with Concatenated LipSwish
Invertible DenseNets with Concatenated LipSwish
Yura Perugachi-Diaz
Jakub M. Tomczak
Sandjai Bhulai
133
20
0
04 Feb 2021
Cauchy-Schwarz Regularized Autoencoder
Cauchy-Schwarz Regularized Autoencoder
Linh-Tam Tran
Maja Pantic
M. Deisenroth
DRLBDL
75
17
0
06 Jan 2021
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
216
98
0
10 Dec 2020
Accelerating Continuous Normalizing Flow with Trajectory Polynomial
  Regularization
Accelerating Continuous Normalizing Flow with Trajectory Polynomial Regularization
Han Huang
Mi-Yen Yeh
69
8
0
08 Dec 2020
General Invertible Transformations for Flow-based Generative Modeling
General Invertible Transformations for Flow-based Generative Modeling
Jakub M. Tomczak
DRLAI4CE
43
4
0
30 Nov 2020
Prior Flow Variational Autoencoder: A density estimation model for
  Non-Intrusive Load Monitoring
Prior Flow Variational Autoencoder: A density estimation model for Non-Intrusive Load Monitoring
Luis Felipe M.O. Henriques
Eduardo Morgan
S. Colcher
Ruy Luiz Milidiú
18
0
0
30 Nov 2020
Predictive Coding, Variational Autoencoders, and Biological Connections
Predictive Coding, Variational Autoencoders, and Biological Connections
Joseph Marino
DRLAI4CE
95
45
0
15 Nov 2020
Training Invertible Linear Layers through Rank-One Perturbations
Training Invertible Linear Layers through Rank-One Perturbations
Andreas Krämer
Jonas Köhler
Frank Noé
49
0
0
14 Oct 2020
Self-Supervised Variational Auto-Encoders
Self-Supervised Variational Auto-Encoders
Ioannis Gatopoulos
Jakub M. Tomczak
53
13
0
05 Oct 2020
One Reflection Suffice
One Reflection Suffice
Alexander Mathiasen
Frederik Hvilshoj
31
0
0
30 Sep 2020
What if Neural Networks had SVDs?
What if Neural Networks had SVDs?
Alexander Mathiasen
Frederik Hvilshoj
Jakob Rødsgaard Jørgensen
Anshul Nasery
Davide Mottin
51
10
0
29 Sep 2020
Quasi-Autoregressive Residual (QuAR) Flows
Quasi-Autoregressive Residual (QuAR) Flows
Achintya Gopal
TPM
29
2
0
16 Sep 2020
Learning more expressive joint distributions in multimodal variational
  methods
Learning more expressive joint distributions in multimodal variational methods
S. Nedelkoski
Mihail Bogojeski
O. Kao
28
1
0
08 Sep 2020
Reconstruction Bottlenecks in Object-Centric Generative Models
Reconstruction Bottlenecks in Object-Centric Generative Models
Martin Engelcke
Oiwi Parker Jones
Ingmar Posner
OCL
94
24
0
13 Jul 2020
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
Didrik Nielsen
P. Jaini
Emiel Hoogeboom
Ole Winther
Max Welling
TPMBDLDRL
82
92
0
06 Jul 2020
VAE-KRnet and its applications to variational Bayes
VAE-KRnet and its applications to variational Bayes
Xiaoliang Wan
Shuangqing Wei
BDLDRL
89
13
0
29 Jun 2020
Reliable Categorical Variational Inference with Mixture of Discrete
  Normalizing Flows
Reliable Categorical Variational Inference with Mixture of Discrete Normalizing Flows
Tomasz Kuśmierczyk
Arto Klami
BDLDRL
29
0
0
28 Jun 2020
Relative gradient optimization of the Jacobian term in unsupervised deep
  learning
Relative gradient optimization of the Jacobian term in unsupervised deep learning
Luigi Gresele
G. Fissore
Adrián Javaloy
Bernhard Schölkopf
Aapo Hyvarinen
DRL
74
22
0
26 Jun 2020
Categorical Normalizing Flows via Continuous Transformations
Categorical Normalizing Flows via Continuous Transformations
Phillip Lippe
E. Gavves
BDL
136
44
0
17 Jun 2020
Learning normalizing flows from Entropy-Kantorovich potentials
Learning normalizing flows from Entropy-Kantorovich potentials
Chris Finlay
Augusto Gerolin
Adam M. Oberman
Aram-Alexandre Pooladian
102
24
0
10 Jun 2020
Super-resolution Variational Auto-Encoders
Super-resolution Variational Auto-Encoders
Ioannis Gatopoulos
M. Stol
Jakub M. Tomczak
SupRDiffM
51
15
0
09 Jun 2020
Graphical Normalizing Flows
Graphical Normalizing Flows
Antoine Wehenkel
Gilles Louppe
TPMBDL
72
39
0
03 Jun 2020
Equivariant Flows: Exact Likelihood Generative Learning for Symmetric
  Densities
Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities
Jonas Köhler
Leon Klein
Frank Noé
DRL
143
279
0
03 Jun 2020
The Convolution Exponential and Generalized Sylvester Flows
The Convolution Exponential and Generalized Sylvester Flows
Emiel Hoogeboom
Victor Garcia Satorras
Jakub M. Tomczak
Max Welling
83
29
0
02 Jun 2020
The Expressive Power of a Class of Normalizing Flow Models
The Expressive Power of a Class of Normalizing Flow Models
Zhifeng Kong
Kamalika Chaudhuri
TPM
82
53
0
31 May 2020
Variational Neural Machine Translation with Normalizing Flows
Variational Neural Machine Translation with Normalizing Flows
Hendra Setiawan
Matthias Sperber
Udhay Nallasamy
Matthias Paulik
DRL
58
12
0
28 May 2020
Invertible Image Rescaling
Invertible Image Rescaling
Mingqing Xiao
Shuxin Zheng
Chang-Shu Liu
Yaolong Wang
Di He
Guolin Ke
Jiang Bian
Zhouchen Lin
Tie-Yan Liu
SupR
95
241
0
12 May 2020
Time Dependence in Non-Autonomous Neural ODEs
Time Dependence in Non-Autonomous Neural ODEs
Jared Davis
K. Choromanski
Jacob Varley
Honglak Lee
Jean-Jacques E. Slotine
Valerii Likhosterov
Adrian Weller
A. Makadia
Vikas Sindhwani
OODAI4TS
40
15
0
05 May 2020
Roundtrip: A Deep Generative Neural Density Estimator
Roundtrip: A Deep Generative Neural Density Estimator
Qiao Liu
Jiaze Xu
R. Jiang
W. Wong
OT
44
4
0
20 Apr 2020
Decoupling Global and Local Representations via Invertible Generative
  Flows
Decoupling Global and Local Representations via Invertible Generative Flows
Xuezhe Ma
X. Kong
Shanghang Zhang
Eduard H. Hovy
DRL
84
3
0
12 Apr 2020
Scaling Bayesian inference of mixed multinomial logit models to very
  large datasets
Scaling Bayesian inference of mixed multinomial logit models to very large datasets
Filipe Rodrigues
BDL
100
3
0
11 Apr 2020
TraDE: Transformers for Density Estimation
TraDE: Transformers for Density Estimation
Rasool Fakoor
Pratik Chaudhari
Jonas W. Mueller
Alex Smola
86
30
0
06 Apr 2020
Stochastic Flows and Geometric Optimization on the Orthogonal Group
Stochastic Flows and Geometric Optimization on the Orthogonal Group
K. Choromanski
David Cheikhi
Jared Davis
Valerii Likhosherstov
Achille Nazaret
...
Yuan Gao
Aldo Pacchiano
Tamás Sarlós
Adrian Weller
Vikas Sindhwani
AI4CE
35
7
0
30 Mar 2020
Woodbury Transformations for Deep Generative Flows
Woodbury Transformations for Deep Generative Flows
You Lu
Bert Huang
85
16
0
27 Feb 2020
Gradient Boosted Normalizing Flows
Gradient Boosted Normalizing Flows
Robert Giaquinto
A. Banerjee
BDLDRL
18
1
0
27 Feb 2020
Max-Affine Spline Insights into Deep Generative Networks
Max-Affine Spline Insights into Deep Generative Networks
Randall Balestriero
Sébastien Paris
Richard Baraniuk
DRLAI4CE
47
15
0
26 Feb 2020
Amortised Learning by Wake-Sleep
Amortised Learning by Wake-Sleep
W. Li
Theodore H. Moskovitz
Heishiro Kanagawa
M. Sahani
OOD
104
7
0
22 Feb 2020
Previous
1234
Next