ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.05649
  4. Cited By
Sylvester Normalizing Flows for Variational Inference
v1v2 (latest)

Sylvester Normalizing Flows for Variational Inference

15 March 2018
Rianne van den Berg
Leonard Hasenclever
Jakub M. Tomczak
Max Welling
    BDLDRL
ArXiv (abs)PDFHTML

Papers citing "Sylvester Normalizing Flows for Variational Inference"

50 / 161 papers shown
Title
Asymptotically exact variational flows via involutive MCMC kernels
Asymptotically exact variational flows via involutive MCMC kernels
Zuheng Xu
Trevor Campbell
30
0
0
02 Jun 2025
Physics-Informed Sylvester Normalizing Flows for Bayesian Inference in Magnetic Resonance Spectroscopy
Physics-Informed Sylvester Normalizing Flows for Bayesian Inference in Magnetic Resonance Spectroscopy
Julian P Merkofer
D. V. D. Sande
A. Bhogal
Ruud J. G. van Sloun
70
0
0
06 May 2025
SD-KDE: Score-Debiased Kernel Density Estimation
SD-KDE: Score-Debiased Kernel Density Estimation
Elliot L. Epstein
Rajat Dwaraknath
Thanawat Sornwanee
John Winnicki
Jerry Weihong Liu
41
1
0
27 Apr 2025
Generative Artificial Intelligence for Internet of Things Computing: A Systematic Survey
Generative Artificial Intelligence for Internet of Things Computing: A Systematic Survey
Fabrizio Mangione
Claudio Savaglio
Giancarlo Fortino
64
1
0
10 Apr 2025
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models
Daniela de Albuquerque
John Pearson
DiffM
154
0
0
03 Jan 2025
Empirical evaluation of normalizing flows in Markov Chain Monte Carlo
Empirical evaluation of normalizing flows in Markov Chain Monte Carlo
David Nabergoj
Erik Štrumbelj
BDLTPM
104
0
0
22 Dec 2024
EigenVI: score-based variational inference with orthogonal function
  expansions
EigenVI: score-based variational inference with orthogonal function expansions
Diana Cai
Chirag Modi
C. Margossian
Robert Mansel Gower
David M. Blei
Lawrence K. Saul
BDL
77
7
0
31 Oct 2024
Physics-integrated generative modeling using attentive planar
  normalizing flow based variational autoencoder
Physics-integrated generative modeling using attentive planar normalizing flow based variational autoencoder
Sheikh Waqas Akhtar
DRL
62
0
0
18 Apr 2024
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Variational Bayesian Optimal Experimental Design with Normalizing Flows
Jiayuan Dong
Christian L. Jacobsen
Mehdi Khalloufi
Maryam Akram
Wanjiao Liu
Karthik Duraisamy
Xun Huan
BDL
184
8
0
08 Apr 2024
PaddingFlow: Improving Normalizing Flows with Padding-Dimensional Noise
PaddingFlow: Improving Normalizing Flows with Padding-Dimensional Noise
Qinglong Meng
Chongkun Xia
Xueqian Wang
18
1
0
13 Mar 2024
Probabilistic Forecasting of Irregular Time Series via Conditional Flows
Probabilistic Forecasting of Irregular Time Series via Conditional Flows
Vijaya Krishna Yalavarthi
Randolf Scholz
Stefan Born
Lars Schmidt-Thieme
AI4TS
150
0
0
09 Feb 2024
Deep Generative Models for Detector Signature Simulation: A Taxonomic
  Review
Deep Generative Models for Detector Signature Simulation: A Taxonomic Review
Baran Hashemi
Claudius Krause
70
16
0
15 Dec 2023
Are Normalizing Flows the Key to Unlocking the Exponential Mechanism?
Are Normalizing Flows the Key to Unlocking the Exponential Mechanism?
Robert A. Bridges
Vandy J. Tombs
Christopher B. Stanley
40
1
0
15 Nov 2023
Boosting Summarization with Normalizing Flows and Aggressive Training
Boosting Summarization with Normalizing Flows and Aggressive Training
Yu Yang
Xiaotong Shen
AI4CETPM
78
0
0
01 Nov 2023
Embracing the chaos: analysis and diagnosis of numerical instability in
  variational flows
Embracing the chaos: analysis and diagnosis of numerical instability in variational flows
Zuheng Xu
Trevor Campbell
78
3
0
12 Jul 2023
Conditional Matrix Flows for Gaussian Graphical Models
Conditional Matrix Flows for Gaussian Graphical Models
M. Negri
F. A. Torres
Volker Roth
33
3
0
12 Jun 2023
Partial Counterfactual Identification of Continuous Outcomes with a
  Curvature Sensitivity Model
Partial Counterfactual Identification of Continuous Outcomes with a Curvature Sensitivity Model
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
129
11
0
02 Jun 2023
One-Line-of-Code Data Mollification Improves Optimization of
  Likelihood-based Generative Models
One-Line-of-Code Data Mollification Improves Optimization of Likelihood-based Generative Models
Ba-Hien Tran
Giulio Franzese
Pietro Michiardi
Maurizio Filippone
DiffM
128
4
0
30 May 2023
GC-Flow: A Graph-Based Flow Network for Effective Clustering
GC-Flow: A Graph-Based Flow Network for Effective Clustering
Tianchun Wang
F. Mirzazadeh
Xinming Zhang
Jing Chen
BDL
89
7
0
26 May 2023
Probabilistic 3D segmentation for aleatoric uncertainty quantification
  in full 3D medical data
Probabilistic 3D segmentation for aleatoric uncertainty quantification in full 3D medical data
Christiaan Viviers
Amaan Valiuddin
Peter H. N. de With
Fons van der Sommen
86
5
0
01 May 2023
Explicitly Minimizing the Blur Error of Variational Autoencoders
Explicitly Minimizing the Blur Error of Variational Autoencoders
G. Bredell
Kyriakos Flouris
K. Chaitanya
Ertunc Erdil
E. Konukoglu
75
25
0
12 Apr 2023
Geometric Clifford Algebra Networks
Geometric Clifford Algebra Networks
David Ruhe
Jayesh K. Gupta
Steven De Keninck
Max Welling
Johannes Brandstetter
AI4CE
139
37
0
13 Feb 2023
Hierarchical Disentangled Representation for Invertible Image Denoising
  and Beyond
Hierarchical Disentangled Representation for Invertible Image Denoising and Beyond
Wenchao Du
Hu Chen
Yan Zhang
H. Yang
59
1
0
31 Jan 2023
Normalizing Flows for Hierarchical Bayesian Analysis: A Gravitational
  Wave Population Study
Normalizing Flows for Hierarchical Bayesian Analysis: A Gravitational Wave Population Study
David Ruhe
Kaze W. K. Wong
M. Cranmer
Patrick Forré
63
7
0
15 Nov 2022
Generalized Product-of-Experts for Learning Multimodal Representations
  in Noisy Environments
Generalized Product-of-Experts for Learning Multimodal Representations in Noisy Environments
Abhinav Joshi
Naman K. Gupta
Jinang Shah
Binod Bhattarai
Ashutosh Modi
Danail Stoyanov
OffRL
64
2
0
07 Nov 2022
CEIP: Combining Explicit and Implicit Priors for Reinforcement Learning
  with Demonstrations
CEIP: Combining Explicit and Implicit Priors for Reinforcement Learning with Demonstrations
Kai Yan
Alex Schwing
Yu-Xiong Wang
OffRL
70
2
0
18 Oct 2022
Invertible Rescaling Network and Its Extensions
Invertible Rescaling Network and Its Extensions
Mingqing Xiao
Shuxin Zheng
Chang-Shu Liu
Zhouchen Lin
Tie-Yan Liu
71
28
0
09 Oct 2022
Langevin Autoencoders for Learning Deep Latent Variable Models
Langevin Autoencoders for Learning Deep Latent Variable Models
Shohei Taniguchi
Yusuke Iwasawa
Wataru Kumagai
Yutaka Matsuo
BDLSyDa
80
2
0
15 Sep 2022
Variational Flow Graphical Model
Variational Flow Graphical Model
Shaogang Ren
Belhal Karimi
Dingcheng Li
Ping Li
91
4
0
06 Jul 2022
Path-Gradient Estimators for Continuous Normalizing Flows
Path-Gradient Estimators for Continuous Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
98
14
0
17 Jun 2022
Flow-based Recurrent Belief State Learning for POMDPs
Flow-based Recurrent Belief State Learning for POMDPs
Xiaoyu Chen
Yao Mu
Ping Luo
Sheng Li
Jianyu Chen
85
19
0
23 May 2022
Statistical Model Criticism of Variational Auto-Encoders
Statistical Model Criticism of Variational Auto-Encoders
Claartje Barkhof
Wilker Aziz
DRL
89
3
0
06 Apr 2022
Conditional-Flow NeRF: Accurate 3D Modelling with Reliable Uncertainty
  Quantification
Conditional-Flow NeRF: Accurate 3D Modelling with Reliable Uncertainty Quantification
Jianxiong Shen
Antonio Agudo
Francesc Moreno-Noguer
Adria Ruiz
AI4CE
129
58
0
18 Mar 2022
Principal Manifold Flows
Principal Manifold Flows
Edmond Cunningham
Adam D. Cobb
Susmit Jha
DRL
70
8
0
14 Feb 2022
Bernstein Flows for Flexible Posteriors in Variational Bayes
Bernstein Flows for Flexible Posteriors in Variational Bayes
Oliver Durr
Stephan Hörling
Daniel Dold
Ivonne Kovylov
Beate Sick
BDL
92
4
0
11 Feb 2022
Invertible Tabular GANs: Killing Two Birds with OneStone for Tabular
  Data Synthesis
Invertible Tabular GANs: Killing Two Birds with OneStone for Tabular Data Synthesis
Jaehoon Lee
Jihyeon Hyeong
Jinsung Jeon
Noseong Park
Jihoon Cho
60
27
0
08 Feb 2022
Universality of parametric Coupling Flows over parametric
  diffeomorphisms
Universality of parametric Coupling Flows over parametric diffeomorphisms
Junlong Lyu
Zhitang Chen
Chang Feng
Wenjing Cun
Shengyu Zhu
Yanhui Geng
Zhijie Xu
Yuxiao Chen
63
3
0
07 Feb 2022
Disentangling Style and Speaker Attributes for TTS Style Transfer
Disentangling Style and Speaker Attributes for TTS Style Transfer
Xiaochun An
Frank Soong
Lei Xie
155
18
0
24 Jan 2022
DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from
  Low-Dimensional Latents
DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from Low-Dimensional Latents
Kushagra Pandey
Avideep Mukherjee
Piyush Rai
Abhishek Kumar
DiffM
117
121
0
02 Jan 2022
ELF: Exact-Lipschitz Based Universal Density Approximator Flow
ELF: Exact-Lipschitz Based Universal Density Approximator Flow
Achintya Gopal
49
1
0
13 Dec 2021
Bootstrap Your Flow
Bootstrap Your Flow
Laurence Illing Midgley
Vincent Stimper
G. Simm
José Miguel Hernández-Lobato
60
5
0
22 Nov 2021
Sinusoidal Flow: A Fast Invertible Autoregressive Flow
Sinusoidal Flow: A Fast Invertible Autoregressive Flow
Yumou Wei
TPM
35
0
0
26 Oct 2021
Neural Flows: Efficient Alternative to Neural ODEs
Neural Flows: Efficient Alternative to Neural ODEs
Marin Bilovs
Johanna Sommer
Syama Sundar Rangapuram
Tim Januschowski
Stephan Günnemann
AI4TS
78
77
0
25 Oct 2021
A Dynamical System Perspective for Lipschitz Neural Networks
A Dynamical System Perspective for Lipschitz Neural Networks
Laurent Meunier
Blaise Delattre
Alexandre Araujo
A. Allauzen
128
56
0
25 Oct 2021
MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without
  Retraining
MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without Retraining
Ahmed Imtiaz Humayun
Randall Balestriero
Richard Baraniuk
OOD
138
31
0
15 Oct 2021
Challenges for Unsupervised Anomaly Detection in Particle Physics
Challenges for Unsupervised Anomaly Detection in Particle Physics
Katherine Fraser
S. Homiller
Rashmish K. Mishra
B. Ostdiek
M. Schwartz
DRL
71
44
0
13 Oct 2021
Modeling Item Response Theory with Stochastic Variational Inference
Modeling Item Response Theory with Stochastic Variational Inference
Mike Wu
R. Davis
B. Domingue
Chris Piech
Noah D. Goodman
CML
66
5
0
26 Aug 2021
Improving Aleatoric Uncertainty Quantification in Multi-Annotated
  Medical Image Segmentation with Normalizing Flows
Improving Aleatoric Uncertainty Quantification in Multi-Annotated Medical Image Segmentation with Normalizing Flows
M. Valiuddin
Christiaan Viviers
R. V. Sloun
Peter H. N. de With
Fons van der Sommen
UQCV
65
17
0
04 Aug 2021
Sparse approximation of triangular transports. Part II: the infinite
  dimensional case
Sparse approximation of triangular transports. Part II: the infinite dimensional case
Jakob Zech
Youssef Marzouk
83
19
0
28 Jul 2021
PU-Flow: a Point Cloud Upsampling Network with Normalizing Flows
PU-Flow: a Point Cloud Upsampling Network with Normalizing Flows
Aihua Mao
Zihui Du
Junhui Hou
Yaqi Duan
Yong Liu
Ying He
3DPC
99
37
0
13 Jul 2021
1234
Next