Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.00165
Cited By
v1
v2
v3 (latest)
Deep Neural Networks as Gaussian Processes
1 November 2017
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep Neural Networks as Gaussian Processes"
50 / 696 papers shown
Title
A theory of data variability in Neural Network Bayesian inference
Javed Lindner
David Dahmen
Michael Krämer
M. Helias
BDL
83
3
0
31 Jul 2023
Local Kernel Renormalization as a mechanism for feature learning in overparametrized Convolutional Neural Networks
R. Aiudi
R. Pacelli
A. Vezzani
R. Burioni
P. Rotondo
MLT
91
16
0
21 Jul 2023
Dataset Distillation Meets Provable Subset Selection
M. Tukan
Alaa Maalouf
Margarita Osadchy
DD
88
4
0
16 Jul 2023
Trainability, Expressivity and Interpretability in Gated Neural ODEs
T. Kim
T. Can
K. Krishnamurthy
AI4CE
91
5
0
12 Jul 2023
Spectral-Bias and Kernel-Task Alignment in Physically Informed Neural Networks
Inbar Seroussi
Asaf Miron
Zohar Ringel
PINN
115
0
0
12 Jul 2023
Quantitative CLTs in Deep Neural Networks
Stefano Favaro
Boris Hanin
Domenico Marinucci
I. Nourdin
G. Peccati
BDL
164
16
0
12 Jul 2023
Fundamental limits of overparametrized shallow neural networks for supervised learning
Francesco Camilli
D. Tieplova
Jean Barbier
81
10
0
11 Jul 2023
Zero-Shot Neural Architecture Search: Challenges, Solutions, and Opportunities
Guihong Li
Duc-Tuong Hoang
Kartikeya Bhardwaj
Ming Lin
Zhangyang Wang
R. Marculescu
140
15
0
05 Jul 2023
Neural Hilbert Ladders: Multi-Layer Neural Networks in Function Space
Zhengdao Chen
102
1
0
03 Jul 2023
The Shaped Transformer: Attention Models in the Infinite Depth-and-Width Limit
Lorenzo Noci
Chuning Li
Mufan Li
Bobby He
Thomas Hofmann
Chris J. Maddison
Daniel M. Roy
135
36
0
30 Jun 2023
Introspective Perception for Mobile Robots
Sadegh Rabiee
Joydeep Biswas
84
4
0
29 Jun 2023
Gaussian random field approximation via Stein's method with applications to wide random neural networks
Krishnakumar Balasubramanian
L. Goldstein
Nathan Ross
Adil Salim
133
9
0
28 Jun 2023
Comparing Deep Learning Models for the Task of Volatility Prediction Using Multivariate Data
Wenbo Ge
Pooia Lalbakhsh
Leigh Isai
Artem Lenskiy
Hanna Suominen
OOD
43
3
0
20 Jun 2023
Representation and decomposition of functions in DAG-DNNs and structural network pruning
Wonjun Hwang
57
1
0
16 Jun 2023
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Daniel Huang
Christian Camaño
Jonathan Tsegaye
Jonathan Austin Gale
AI4CE
86
0
0
10 Jun 2023
Efficient Uncertainty Quantification and Reduction for Over-Parameterized Neural Networks
Ziyi Huang
Henry Lam
Haofeng Zhang
UQCV
86
7
0
09 Jun 2023
Uniform Convergence of Deep Neural Networks with Lipschitz Continuous Activation Functions and Variable Widths
Yuesheng Xu
Haizhang Zhang
151
3
0
02 Jun 2023
Centered Self-Attention Layers
Ameen Ali
Tomer Galanti
Lior Wolf
144
8
0
02 Jun 2023
Large-Batch, Iteration-Efficient Neural Bayesian Design Optimization
Navid Ansari
Hans-Peter Seidel
Vahid Babaei
95
2
0
01 Jun 2023
A Study of Bayesian Neural Network Surrogates for Bayesian Optimization
Y. Li
Tim G. J. Rudner
A. Wilson
BDL
114
34
0
31 May 2023
A Rainbow in Deep Network Black Boxes
Florentin Guth
Brice Ménard
G. Rochette
S. Mallat
119
12
0
29 May 2023
An Improved Variational Approximate Posterior for the Deep Wishart Process
Sebastian W. Ober
Ben Anson
Edward Milsom
Laurence Aitchison
BDL
55
5
0
23 May 2023
Mind the spikes: Benign overfitting of kernels and neural networks in fixed dimension
Moritz Haas
David Holzmüller
U. V. Luxburg
Ingo Steinwart
MLT
121
14
0
23 May 2023
Squared Neural Families: A New Class of Tractable Density Models
Russell Tsuchida
Cheng Soon Ong
Dino Sejdinovic
TPM
78
12
0
22 May 2023
Posterior Inference on Shallow Infinitely Wide Bayesian Neural Networks under Weights with Unbounded Variance
Jorge Loría
A. Bhadra
UQCV
BDL
146
1
0
18 May 2023
Sparsity-depth Tradeoff in Infinitely Wide Deep Neural Networks
Chanwoo Chun
Daniel D. Lee
BDL
89
2
0
17 May 2023
A Scalable Walsh-Hadamard Regularizer to Overcome the Low-degree Spectral Bias of Neural Networks
Ali Gorji
Andisheh Amrollahi
A. Krause
55
4
0
16 May 2023
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
84
18
0
08 May 2023
Structures of Neural Network Effective Theories
cCaugin Ararat
Tianji Cai
Cem Tekin
Zhengkang Zhang
117
7
0
03 May 2023
Random Function Descent
Felix Benning
L. Döring
57
0
0
02 May 2023
When Do Graph Neural Networks Help with Node Classification? Investigating the Impact of Homophily Principle on Node Distinguishability
Sitao Luan
Chenqing Hua
Minkai Xu
Qincheng Lu
Jiaqi Zhu
Xiaoming Chang
Jie Fu
J. Leskovec
Doina Precup
103
5
0
25 Apr 2023
Generalization and Estimation Error Bounds for Model-based Neural Networks
Avner Shultzman
Eyar Azar
M. Rodrigues
Yonina C. Eldar
68
7
0
19 Apr 2023
Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Vincent Fortuin
BDL
UQCV
95
10
0
17 Apr 2023
Deep neural networks have an inbuilt Occam's razor
Chris Mingard
Henry Rees
Guillermo Valle Pérez
A. Louis
UQCV
BDL
104
16
0
13 Apr 2023
UATTA-EB: Uncertainty-Aware Test-Time Augmented Ensemble of BERTs for Classifying Common Mental Illnesses on Social Media Posts
Pratinav Seth
Mihir Agarwal
AI4MH
71
1
0
10 Apr 2023
Non-asymptotic approximations of Gaussian neural networks via second-order Poincaré inequalities
Alberto Bordino
Stefano Favaro
S. Fortini
89
8
0
08 Apr 2023
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks
Blake Bordelon
Cengiz Pehlevan
MLT
115
31
0
06 Apr 2023
Wide neural networks: From non-gaussian random fields at initialization to the NTK geometry of training
Luís Carvalho
Joao L. Costa
José Mourao
Gonccalo Oliveira
AI4CE
72
2
0
06 Apr 2023
Biological Sequence Kernels with Guaranteed Flexibility
Alan N. Amin
Eli N. Weinstein
D. Marks
90
4
0
06 Apr 2023
Self-Distillation for Gaussian Process Regression and Classification
Kenneth Borup
L. Andersen
69
2
0
05 Apr 2023
Effective Theory of Transformers at Initialization
Emily Dinan
Sho Yaida
Susan Zhang
100
16
0
04 Apr 2023
VNE: An Effective Method for Improving Deep Representation by Manipulating Eigenvalue Distribution
Jaeill Kim
Suhyun Kang
Duhun Hwang
Jungwook Shin
Wonjong Rhee
DRL
109
24
0
04 Apr 2023
Sparse Cholesky Factorization for Solving Nonlinear PDEs via Gaussian Processes
Yifan Chen
H. Owhadi
F. Schafer
102
31
0
03 Apr 2023
Knowledge Accumulation in Continually Learned Representations and the Issue of Feature Forgetting
Timm Hess
Eli Verwimp
Gido M. van de Ven
Tinne Tuytelaars
CLL
128
9
0
03 Apr 2023
Neural signature kernels as infinite-width-depth-limits of controlled ResNets
Nicola Muca Cirone
M. Lemercier
C. Salvi
95
25
0
30 Mar 2023
Inferring networks from time series: a neural approach
Thomas Gaskin
G. Pavliotis
Mark Girolami
AI4TS
89
7
0
30 Mar 2023
Function Approximation with Randomly Initialized Neural Networks for Approximate Model Reference Adaptive Control
Tyler Lekang
Andrew G. Lamperski
79
0
0
28 Mar 2023
On the Stepwise Nature of Self-Supervised Learning
James B. Simon
Maksis Knutins
Liu Ziyin
Daniel Geisz
Abraham J. Fetterman
Joshua Albrecht
SSL
104
35
0
27 Mar 2023
Double Descent Demystified: Identifying, Interpreting & Ablating the Sources of a Deep Learning Puzzle
Rylan Schaeffer
Mikail Khona
Zachary Robertson
Akhilan Boopathy
Kateryna Pistunova
J. Rocks
Ila Rani Fiete
Oluwasanmi Koyejo
156
35
0
24 Mar 2023
Online Learning for the Random Feature Model in the Student-Teacher Framework
Roman Worschech
B. Rosenow
97
0
0
24 Mar 2023
Previous
1
2
3
4
5
...
12
13
14
Next