Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.00165
Cited By
Deep Neural Networks as Gaussian Processes
1 November 2017
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Neural Networks as Gaussian Processes"
50 / 692 papers shown
Title
Fundamental limits of overparametrized shallow neural networks for supervised learning
Francesco Camilli
D. Tieplova
Jean Barbier
43
9
0
11 Jul 2023
Zero-Shot Neural Architecture Search: Challenges, Solutions, and Opportunities
Guihong Li
Duc-Tuong Hoang
Kartikeya Bhardwaj
Ming Lin
Zhangyang Wang
R. Marculescu
51
11
0
05 Jul 2023
Neural Hilbert Ladders: Multi-Layer Neural Networks in Function Space
Zhengdao Chen
46
1
0
03 Jul 2023
The Shaped Transformer: Attention Models in the Infinite Depth-and-Width Limit
Lorenzo Noci
Chuning Li
Mufan Li
Bobby He
Thomas Hofmann
Chris J. Maddison
Daniel M. Roy
46
31
0
30 Jun 2023
Introspective Perception for Mobile Robots
Sadegh Rabiee
Joydeep Biswas
38
3
0
29 Jun 2023
Gaussian random field approximation via Stein's method with applications to wide random neural networks
Krishnakumar Balasubramanian
L. Goldstein
Nathan Ross
Adil Salim
37
9
0
28 Jun 2023
Comparing Deep Learning Models for the Task of Volatility Prediction Using Multivariate Data
Wenbo Ge
Pooia Lalbakhsh
Leigh Isai
Artem Lenskiy
Hanna Suominen
OOD
23
3
0
20 Jun 2023
Representation and decomposition of functions in DAG-DNNs and structural network pruning
Wonjun Hwang
30
1
0
16 Jun 2023
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Daniel Huang
Christian Camaño
Jonathan Tsegaye
Jonathan Austin Gale
AI4CE
40
0
0
10 Jun 2023
Efficient Uncertainty Quantification and Reduction for Over-Parameterized Neural Networks
Ziyi Huang
Henry Lam
Haofeng Zhang
UQCV
33
4
0
09 Jun 2023
Uniform Convergence of Deep Neural Networks with Lipschitz Continuous Activation Functions and Variable Widths
Yuesheng Xu
Haizhang Zhang
39
3
0
02 Jun 2023
Centered Self-Attention Layers
Ameen Ali
Tomer Galanti
Lior Wolf
56
6
0
02 Jun 2023
Large-Batch, Iteration-Efficient Neural Bayesian Design Optimization
Navid Ansari
Hans-Peter Seidel
Vahid Babaei
29
2
0
01 Jun 2023
A Study of Bayesian Neural Network Surrogates for Bayesian Optimization
Y. Li
Tim G. J. Rudner
A. Wilson
BDL
42
28
0
31 May 2023
A Rainbow in Deep Network Black Boxes
Florentin Guth
Brice Ménard
G. Rochette
S. Mallat
39
10
0
29 May 2023
An Improved Variational Approximate Posterior for the Deep Wishart Process
Sebastian W. Ober
Ben Anson
Edward Milsom
Laurence Aitchison
BDL
36
5
0
23 May 2023
Mind the spikes: Benign overfitting of kernels and neural networks in fixed dimension
Moritz Haas
David Holzmüller
U. V. Luxburg
Ingo Steinwart
MLT
42
14
0
23 May 2023
Squared Neural Families: A New Class of Tractable Density Models
Russell Tsuchida
Cheng Soon Ong
Dino Sejdinovic
TPM
28
11
0
22 May 2023
Posterior Inference on Shallow Infinitely Wide Bayesian Neural Networks under Weights with Unbounded Variance
Jorge Loría
A. Bhadra
UQCV
BDL
41
1
0
18 May 2023
Sparsity-depth Tradeoff in Infinitely Wide Deep Neural Networks
Chanwoo Chun
Daniel D. Lee
BDL
45
2
0
17 May 2023
A Scalable Walsh-Hadamard Regularizer to Overcome the Low-degree Spectral Bias of Neural Networks
Ali Gorji
Andisheh Amrollahi
A. Krause
19
4
0
16 May 2023
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
34
17
0
08 May 2023
Structures of Neural Network Effective Theories
cCaugin Ararat
Tianji Cai
Cem Tekin
Zhengkang Zhang
60
7
0
03 May 2023
Random Function Descent
Felix Benning
L. Döring
26
0
0
02 May 2023
When Do Graph Neural Networks Help with Node Classification? Investigating the Impact of Homophily Principle on Node Distinguishability
Sitao Luan
Chenqing Hua
Minkai Xu
Qincheng Lu
Jiaqi Zhu
Xiaoming Chang
Jie Fu
J. Leskovec
Doina Precup
46
3
0
25 Apr 2023
Generalization and Estimation Error Bounds for Model-based Neural Networks
Avner Shultzman
Eyar Azar
M. Rodrigues
Yonina C. Eldar
24
7
0
19 Apr 2023
Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Vincent Fortuin
BDL
UQCV
30
8
0
17 Apr 2023
Do deep neural networks have an inbuilt Occam's razor?
Chris Mingard
Henry Rees
Guillermo Valle Pérez
A. Louis
UQCV
BDL
31
16
0
13 Apr 2023
UATTA-EB: Uncertainty-Aware Test-Time Augmented Ensemble of BERTs for Classifying Common Mental Illnesses on Social Media Posts
Pratinav Seth
Mihir Agarwal
AI4MH
23
1
0
10 Apr 2023
Non-asymptotic approximations of Gaussian neural networks via second-order Poincaré inequalities
Alberto Bordino
Stefano Favaro
S. Fortini
28
7
0
08 Apr 2023
Dynamics of Finite Width Kernel and Prediction Fluctuations in Mean Field Neural Networks
Blake Bordelon
Cengiz Pehlevan
MLT
43
29
0
06 Apr 2023
Wide neural networks: From non-gaussian random fields at initialization to the NTK geometry of training
Luís Carvalho
Joao L. Costa
José Mourao
Gonccalo Oliveira
AI4CE
31
1
0
06 Apr 2023
Biological Sequence Kernels with Guaranteed Flexibility
Alan N. Amin
Eli N. Weinstein
D. Marks
40
4
0
06 Apr 2023
Self-Distillation for Gaussian Process Regression and Classification
Kenneth Borup
L. Andersen
21
2
0
05 Apr 2023
Effective Theory of Transformers at Initialization
Emily Dinan
Sho Yaida
Susan Zhang
32
14
0
04 Apr 2023
VNE: An Effective Method for Improving Deep Representation by Manipulating Eigenvalue Distribution
Jaeill Kim
Suhyun Kang
Duhun Hwang
Jungwook Shin
Wonjong Rhee
DRL
18
21
0
04 Apr 2023
Sparse Cholesky Factorization for Solving Nonlinear PDEs via Gaussian Processes
Yifan Chen
H. Owhadi
F. Schafer
45
31
0
03 Apr 2023
Knowledge Accumulation in Continually Learned Representations and the Issue of Feature Forgetting
Timm Hess
Eli Verwimp
Gido M. van de Ven
Tinne Tuytelaars
CLL
33
7
0
03 Apr 2023
Neural signature kernels as infinite-width-depth-limits of controlled ResNets
Nicola Muca Cirone
M. Lemercier
C. Salvi
26
23
0
30 Mar 2023
Inferring networks from time series: a neural approach
Thomas Gaskin
G. Pavliotis
Mark Girolami
AI4TS
32
7
0
30 Mar 2023
Function Approximation with Randomly Initialized Neural Networks for Approximate Model Reference Adaptive Control
Tyler Lekang
Andrew G. Lamperski
23
0
0
28 Mar 2023
On the Stepwise Nature of Self-Supervised Learning
James B. Simon
Maksis Knutins
Liu Ziyin
Daniel Geisz
Abraham J. Fetterman
Joshua Albrecht
SSL
42
30
0
27 Mar 2023
Double Descent Demystified: Identifying, Interpreting & Ablating the Sources of a Deep Learning Puzzle
Rylan Schaeffer
Mikail Khona
Zachary Robertson
Akhilan Boopathy
Kateryna Pistunova
J. Rocks
Ila Rani Fiete
Oluwasanmi Koyejo
72
31
0
24 Mar 2023
Online Learning for the Random Feature Model in the Student-Teacher Framework
Roman Worschech
B. Rosenow
51
0
0
24 Mar 2023
Efficient Uncertainty Estimation with Gaussian Process for Reliable Dialog Response Retrieval
Tong Ye
Zhitao Li
Jianzong Wang
Ning Cheng
Jing Xiao
BDL
32
1
0
15 Mar 2023
Kernel Regression with Infinite-Width Neural Networks on Millions of Examples
Ben Adlam
Jaehoon Lee
Shreyas Padhy
Zachary Nado
Jasper Snoek
26
11
0
09 Mar 2023
Bayesian inference with finitely wide neural networks
Chi-Ken Lu
BDL
37
0
0
06 Mar 2023
Phase diagram of early training dynamics in deep neural networks: effect of the learning rate, depth, and width
Dayal Singh Kalra
M. Barkeshli
25
9
0
23 Feb 2023
Heterogeneous Neuronal and Synaptic Dynamics for Spike-Efficient Unsupervised Learning: Theory and Design Principles
Biswadeep Chakraborty
Saibal Mukhopadhyay
20
10
0
22 Feb 2023
Deep Transformers without Shortcuts: Modifying Self-attention for Faithful Signal Propagation
Bobby He
James Martens
Guodong Zhang
Aleksandar Botev
Andy Brock
Samuel L. Smith
Yee Whye Teh
27
30
0
20 Feb 2023
Previous
1
2
3
4
5
...
12
13
14
Next