Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.00165
Cited By
Deep Neural Networks as Gaussian Processes
1 November 2017
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Neural Networks as Gaussian Processes"
50 / 692 papers shown
Title
The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of Generalization
Ben Adlam
Jeffrey Pennington
25
124
0
15 Aug 2020
Stochastic Bayesian Neural Networks
Abhinav Sagar
BDL
UQCV
25
0
0
12 Aug 2020
Shallow Univariate ReLu Networks as Splines: Initialization, Loss Surface, Hessian, & Gradient Flow Dynamics
Justin Sahs
Ryan Pyle
Aneel Damaraju
J. O. Caro
Onur Tavaslioglu
Andy Lu
Ankit B. Patel
21
19
0
04 Aug 2020
Cold Posteriors and Aleatoric Uncertainty
Ben Adlam
Jasper Snoek
Samuel L. Smith
BDL
UQCV
42
23
0
31 Jul 2020
Finite Versus Infinite Neural Networks: an Empirical Study
Jaehoon Lee
S. Schoenholz
Jeffrey Pennington
Ben Adlam
Lechao Xiao
Roman Novak
Jascha Narain Sohl-Dickstein
28
209
0
31 Jul 2020
When and why PINNs fail to train: A neural tangent kernel perspective
Sizhuang He
Xinling Yu
P. Perdikaris
33
881
0
28 Jul 2020
DeepKriging: Spatially Dependent Deep Neural Networks for Spatial Prediction
Wanfang Chen
Yuxiao Li
Brian J. Reich
Ying Sun
26
30
0
23 Jul 2020
Disentangling the Gauss-Newton Method and Approximate Inference for Neural Networks
Alexander Immer
BDL
19
4
0
21 Jul 2020
Early Stopping in Deep Networks: Double Descent and How to Eliminate it
Reinhard Heckel
Fatih Yilmaz
34
44
0
20 Jul 2020
From deep to Shallow: Equivalent Forms of Deep Networks in Reproducing Kernel Krein Space and Indefinite Support Vector Machines
A. Shilton
Sunil Gupta
Santu Rana
Svetha Venkatesh
27
0
0
15 Jul 2020
Structured Weight Priors for Convolutional Neural Networks
Tim Pearce
Andrew Y. K. Foong
Alexandra Brintrup
BDL
14
2
0
12 Jul 2020
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bobby He
Balaji Lakshminarayanan
Yee Whye Teh
BDL
UQCV
14
117
0
11 Jul 2020
Characteristics of Monte Carlo Dropout in Wide Neural Networks
Joachim Sicking
Maram Akila
Tim Wirtz
Sebastian Houben
Asja Fischer
BDL
UQCV
20
6
0
10 Jul 2020
Bayesian Neural Networks for Fast SUSY Predictions
B. Kronheim
M. Kuchera
Harrison B. Prosper
A. Karbo
21
17
0
09 Jul 2020
Doubly infinite residual neural networks: a diffusion process approach
Stefano Peluchetti
Stefano Favaro
22
2
0
07 Jul 2020
Parametric machines: a fresh approach to architecture search
Pietro Vertechi
M. Bergomi
35
2
0
06 Jul 2020
Qualitative Analysis of Monte Carlo Dropout
Ronald Seoh
UQCV
BDL
6
29
0
03 Jul 2020
On the Similarity between the Laplace and Neural Tangent Kernels
Amnon Geifman
A. Yadav
Yoni Kasten
Meirav Galun
David Jacobs
Ronen Basri
25
89
0
03 Jul 2020
A Chain Graph Interpretation of Real-World Neural Networks
Yuesong Shen
Daniel Cremers
GNN
AI4CE
6
0
0
30 Jun 2020
Associative Memory in Iterated Overparameterized Sigmoid Autoencoders
Yibo Jiang
Cengiz Pehlevan
21
13
0
30 Jun 2020
Uniform Priors for Data-Efficient Transfer
Samarth Sinha
Karsten Roth
Anirudh Goyal
Marzyeh Ghassemi
Hugo Larochelle
Animesh Garg
OOD
37
0
0
30 Jun 2020
Is SGD a Bayesian sampler? Well, almost
Chris Mingard
Guillermo Valle Pérez
Joar Skalse
A. Louis
BDL
26
51
0
26 Jun 2020
The Gaussian equivalence of generative models for learning with shallow neural networks
Sebastian Goldt
Bruno Loureiro
Galen Reeves
Florent Krzakala
M. Mézard
Lenka Zdeborová
BDL
41
100
0
25 Jun 2020
Tensor Programs II: Neural Tangent Kernel for Any Architecture
Greg Yang
58
135
0
25 Jun 2020
Likelihood-Free Gaussian Process for Regression
Yuta Shikuri
18
0
0
24 Jun 2020
When Do Neural Networks Outperform Kernel Methods?
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
29
185
0
24 Jun 2020
Spectral Bias and Task-Model Alignment Explain Generalization in Kernel Regression and Infinitely Wide Neural Networks
Abdulkadir Canatar
Blake Bordelon
Cengiz Pehlevan
34
181
0
23 Jun 2020
Bayesian Neural Networks: An Introduction and Survey
Ethan Goan
Clinton Fookes
BDL
UQCV
37
199
0
22 Jun 2020
Exact posterior distributions of wide Bayesian neural networks
Jiri Hron
Yasaman Bahri
Roman Novak
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
28
27
0
18 Jun 2020
Infinite attention: NNGP and NTK for deep attention networks
Jiri Hron
Yasaman Bahri
Jascha Narain Sohl-Dickstein
Roman Novak
16
113
0
18 Jun 2020
The Recurrent Neural Tangent Kernel
Sina Alemohammad
Zichao Wang
Randall Balestriero
Richard Baraniuk
AAML
11
77
0
18 Jun 2020
On the Preservation of Spatio-temporal Information in Machine Learning Applications
Yigit Oktar
Mehmet Türkan
15
1
0
15 Jun 2020
NP-PROV: Neural Processes with Position-Relevant-Only Variances
Xuesong Wang
Lina Yao
Xianzhi Wang
Feiping Nie
BDL
26
3
0
15 Jun 2020
Sample complexity and effective dimension for regression on manifolds
Andrew D. McRae
Justin Romberg
Mark A. Davenport
24
8
0
13 Jun 2020
On the asymptotics of wide networks with polynomial activations
Kyle Aitken
Guy Gur-Ari
14
22
0
11 Jun 2020
Coresets via Bilevel Optimization for Continual Learning and Streaming
Zalan Borsos
Mojmír Mutný
Andreas Krause
CLL
38
227
0
06 Jun 2020
Learning across label confidence distributions using Filtered Transfer Learning
S. Tonekaboni
Andrew E. Brereton
Z. Safikhani
A. Windemuth
B. Haibe-Kains
S. MacKinnon
FedML
28
2
0
03 Jun 2020
Spectra of the Conjugate Kernel and Neural Tangent Kernel for linear-width neural networks
Z. Fan
Zhichao Wang
44
71
0
25 May 2020
Deep covariate-learning: optimising information extraction from terrain texture for geostatistical modelling applications
Charlie Kirkwood
6
4
0
22 May 2020
Deep Latent-Variable Kernel Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
BDL
25
8
0
18 May 2020
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
31
60
0
17 May 2020
Modularizing Deep Learning via Pairwise Learning With Kernels
Shiyu Duan
Shujian Yu
José C. Príncipe
MoMe
27
20
0
12 May 2020
Provable Training of a ReLU Gate with an Iterative Non-Gradient Algorithm
Sayar Karmakar
Anirbit Mukherjee
14
7
0
08 May 2020
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
51
172
0
23 Apr 2020
Space of Functions Computed by Deep-Layered Machines
Alexander Mozeika
Bo Li
D. Saad
11
8
0
19 Apr 2020
Adversarial Robustness Guarantees for Random Deep Neural Networks
Giacomo De Palma
B. Kiani
S. Lloyd
AAML
OOD
21
8
0
13 Apr 2020
On the Neural Tangent Kernel of Deep Networks with Orthogonal Initialization
Wei Huang
Weitao Du
R. Xu
22
37
0
13 Apr 2020
Reinforcement Learning via Gaussian Processes with Neural Network Dual Kernels
I. Goumiri
Benjamin W. Priest
M. Schneider
GP
BDL
14
6
0
10 Apr 2020
Predicting the outputs of finite deep neural networks trained with noisy gradients
Gadi Naveh
Oded Ben-David
H. Sompolinsky
Zohar Ringel
24
21
0
02 Apr 2020
On Infinite-Width Hypernetworks
Etai Littwin
Tomer Galanti
Lior Wolf
Greg Yang
14
11
0
27 Mar 2020
Previous
1
2
3
...
10
11
12
13
14
Next