127
34
v1v2v3 (latest)

Truth or Backpropaganda? An Empirical Investigation of Deep Learning Theory

Abstract

We empirically evaluate common assumptions about neural networks that are widely held by practitioners and theorists alike. In this work, we: (1) prove the widespread existence of suboptimal local minima in the loss landscape of neural networks, and we use our theory to find examples; (2) show that small-norm parameters are not optimal for generalization; (3) demonstrate that ResNets do not conform to wide-network theories, such as the neural tangent kernel, and that the interaction between skip connections and batch normalization plays a role; (4) find that rank does not correlate with generalization or robustness in a practical setting.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.