ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.08933
  4. Cited By
Doubly Stochastic Variational Inference for Deep Gaussian Processes

Doubly Stochastic Variational Inference for Deep Gaussian Processes

24 May 2017
Hugh Salimbeni
M. Deisenroth
    BDL
    GP
ArXivPDFHTML

Papers citing "Doubly Stochastic Variational Inference for Deep Gaussian Processes"

50 / 230 papers shown
Title
Variational Linearized Laplace Approximation for Bayesian Deep Learning
Variational Linearized Laplace Approximation for Bayesian Deep Learning
Luis A. Ortega
Simón Rodríguez Santana
Daniel Hernández-Lobato
BDL
UQCV
47
4
0
24 Feb 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
Scott A. Sisson
16
9
0
20 Feb 2023
Guided Deep Kernel Learning
Guided Deep Kernel Learning
Idan Achituve
Gal Chechik
Ethan Fetaya
BDL
31
5
0
19 Feb 2023
Trieste: Efficiently Exploring The Depths of Black-box Functions with
  TensorFlow
Trieste: Efficiently Exploring The Depths of Black-box Functions with TensorFlow
Victor Picheny
Joel Berkeley
Henry B. Moss
Hrvoje Stojić
Uri Granta
...
Sergio Pascual-Diaz
Stratis Markou
Jixiang Qing
Nasrulloh Loka
Ivo Couckuyt
23
17
0
16 Feb 2023
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Ba-Hien Tran
Babak Shahbaba
Stephan Mandt
Maurizio Filippone
SyDa
BDL
UQCV
21
5
0
09 Feb 2023
Towards Flexibility and Interpretability of Gaussian Process State-Space
  Model
Towards Flexibility and Interpretability of Gaussian Process State-Space Model
Zhidi Lin
Feng Yin
Juan Maroñas
34
7
0
21 Jan 2023
Active Learning of Piecewise Gaussian Process Surrogates
Active Learning of Piecewise Gaussian Process Surrogates
Chiwoo Park
R. Waelder
Bonggwon Kang
Benji Maruyama
Soondo Hong
R. Gramacy
GP
24
1
0
20 Jan 2023
A Pattern Discovery Approach to Multivariate Time Series Forecasting
A Pattern Discovery Approach to Multivariate Time Series Forecasting
Yunyao Cheng
Chenjuan Guo
Kai Chen
Kai Zhao
B. Yang
Jiandong Xie
Christian S. Jensen
Feiteng Huang
Kai Zheng
AI4TS
30
1
0
20 Dec 2022
A Flexible Nadaraya-Watson Head Can Offer Explainable and Calibrated
  Classification
A Flexible Nadaraya-Watson Head Can Offer Explainable and Calibrated Classification
Alan Q. Wang
M. Sabuncu
30
5
0
07 Dec 2022
Deep Gaussian Processes for Air Quality Inference
Deep Gaussian Processes for Air Quality Inference
Aadesh Desai
Eshan Gujarathi
Saagar Parikh
Sachin Yadav
Zeel B Patel
Nipun Batra
36
2
0
18 Nov 2022
Ischemic Stroke Lesion Prediction using imbalanced Temporal Deep
  Gaussian Process (iTDGP)
Ischemic Stroke Lesion Prediction using imbalanced Temporal Deep Gaussian Process (iTDGP)
Mohsen Soltanpour
Muhammad Yousefnezhad
Russ Greiner
Pierre Boulanger
B. Buck
11
1
0
16 Nov 2022
Sparse Gaussian Process Hyperparameters: Optimize or Integrate?
Sparse Gaussian Process Hyperparameters: Optimize or Integrate?
V. Lalchand
W. Bruinsma
David R. Burt
C. Rasmussen
GP
17
6
0
04 Nov 2022
Variational Hierarchical Mixtures for Probabilistic Learning of Inverse
  Dynamics
Variational Hierarchical Mixtures for Probabilistic Learning of Inverse Dynamics
Hany Abdulsamad
Peter Nickl
Pascal Klink
Jan Peters
29
0
0
02 Nov 2022
Joint control variate for faster black-box variational inference
Joint control variate for faster black-box variational inference
Xi Wang
Tomas Geffner
Justin Domke
BDL
DRL
19
0
0
13 Oct 2022
Computationally-efficient initialisation of GPs: The generalised
  variogram method
Computationally-efficient initialisation of GPs: The generalised variogram method
Felipe A. Tobar
Elsa Cazelles
T. Wolff
14
0
0
11 Oct 2022
Bézier Gaussian Processes for Tall and Wide Data
Bézier Gaussian Processes for Tall and Wide Data
Martin Jørgensen
Michael A. Osborne
GP
19
2
0
01 Sep 2022
Nonparametric Factor Trajectory Learning for Dynamic Tensor
  Decomposition
Nonparametric Factor Trajectory Learning for Dynamic Tensor Decomposition
Zihan Wang
Shandian Zhe
11
5
0
06 Jul 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
29
0
0
27 Jun 2022
Shallow and Deep Nonparametric Convolutions for Gaussian Processes
Shallow and Deep Nonparametric Convolutions for Gaussian Processes
Thomas M. McDonald
M. Ross
M. Smith
Mauricio A. Alvarez
15
1
0
17 Jun 2022
Photoelectric Factor Prediction Using Automated Learning and Uncertainty
  Quantification
Photoelectric Factor Prediction Using Automated Learning and Uncertainty Quantification
K. Alsamadony
A. Ibrahim
S. Elkatatny
A. Abdulraheem
17
1
0
17 Jun 2022
Deep Variational Implicit Processes
Deep Variational Implicit Processes
Luis A. Ortega
Simón Rodríguez Santana
Daniel Hernández-Lobato
BDL
23
5
0
14 Jun 2022
Scalable Deep Gaussian Markov Random Fields for General Graphs
Scalable Deep Gaussian Markov Random Fields for General Graphs
Joel Oskarsson
Per Sidén
Fredrik Lindsten
BDL
11
3
0
10 Jun 2022
Multi-fidelity Hierarchical Neural Processes
Multi-fidelity Hierarchical Neural Processes
D. Wu
Matteo Chinazzi
Alessandro Vespignani
Yi Ma
Rose Yu
AI4CE
16
13
0
10 Jun 2022
Statistical Deep Learning for Spatial and Spatio-Temporal Data
Statistical Deep Learning for Spatial and Spatio-Temporal Data
C. Wikle
A. Zammit‐Mangion
BDL
21
45
0
05 Jun 2022
Efficient Transformed Gaussian Processes for Non-Stationary Dependent
  Multi-class Classification
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
Juan Maroñas
Daniel Hernández-Lobato
19
6
0
30 May 2022
AK: Attentive Kernel for Information Gathering
AK: Attentive Kernel for Information Gathering
Weizhe (Wesley) Chen
R. Khardon
Lantao Liu
32
12
0
13 May 2022
Modelling calibration uncertainty in networks of environmental sensors
Modelling calibration uncertainty in networks of environmental sensors
M. Smith
M. Ross
Joel Ssematimba
Pablo A. Alvarado
Mauricio A. Alvarez
Engineer Bainomugisha
R. Wilkinson
6
3
0
04 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
26
48
0
01 May 2022
A piece-wise constant approximation for non-conjugate Gaussian Process
  models
A piece-wise constant approximation for non-conjugate Gaussian Process models
Sarem Seitz
14
0
0
22 Apr 2022
Gaussian Processes for Missing Value Imputation
Gaussian Processes for Missing Value Imputation
B. Jafrasteh
Daniel Hernández-Lobato
Simón Pedro Lubián López
Isabel Benavente-Fernández
GP
14
14
0
10 Apr 2022
Vecchia-approximated Deep Gaussian Processes for Computer Experiments
Vecchia-approximated Deep Gaussian Processes for Computer Experiments
Annie Sauer
A. Cooper
R. Gramacy
16
34
0
06 Apr 2022
Hybrid Transfer in Deep Reinforcement Learning for Ads Allocation
Hybrid Transfer in Deep Reinforcement Learning for Ads Allocation
Zehua Wang
Guogang Liao
Xiaowen Shi
Xiaoxu Wu
Chuheng Zhang
Bingqin Zhu
Yongkang Wang
Xingxing Wang
Dong Wang
17
4
0
02 Apr 2022
On Connecting Deep Trigonometric Networks with Deep Gaussian Processes:
  Covariance, Expressivity, and Neural Tangent Kernel
On Connecting Deep Trigonometric Networks with Deep Gaussian Processes: Covariance, Expressivity, and Neural Tangent Kernel
Chi-Ken Lu
Patrick Shafto
BDL
34
0
0
14 Mar 2022
Generalised Gaussian Process Latent Variable Models (GPLVM) with
  Stochastic Variational Inference
Generalised Gaussian Process Latent Variable Models (GPLVM) with Stochastic Variational Inference
V. Lalchand
Aditya Ravuri
Neil D. Lawrence
GP
VLM
10
5
0
25 Feb 2022
Confident Neural Network Regression with Bootstrapped Deep Ensembles
Confident Neural Network Regression with Bootstrapped Deep Ensembles
Laurens Sluijterman
Eric Cator
Tom Heskes
BDL
UQCV
FedML
16
2
0
22 Feb 2022
Triangulation candidates for Bayesian optimization
Triangulation candidates for Bayesian optimization
R. Gramacy
Anna Sauer
Nathan Wycoff
16
13
0
14 Dec 2021
Posterior contraction rates for constrained deep Gaussian processes in
  density estimation and classication
Posterior contraction rates for constrained deep Gaussian processes in density estimation and classication
F. Bachoc
A. Lagnoux
26
4
0
14 Dec 2021
A Sparse Expansion For Deep Gaussian Processes
A Sparse Expansion For Deep Gaussian Processes
Liang Ding
Rui Tuo
Shahin Shahrampour
16
6
0
11 Dec 2021
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Yonghui Fan
Yalin Wang
18
2
0
30 Oct 2021
Variational Bayesian Approximation of Inverse Problems using Sparse
  Precision Matrices
Variational Bayesian Approximation of Inverse Problems using Sparse Precision Matrices
Jan Povala
Ieva Kazlauskaite
Eky Febrianto
F. Cirak
Mark Girolami
32
22
0
22 Oct 2021
Bayesian Meta-Learning Through Variational Gaussian Processes
Bayesian Meta-Learning Through Variational Gaussian Processes
Vivek Myers
Nikhil Sardana
BDL
UQCV
4
4
0
21 Oct 2021
Nonnegative spatial factorization
Nonnegative spatial factorization
F. W. Townes
Barbara E. Engelhardt
16
11
0
12 Oct 2021
Probabilistic Metamodels for an Efficient Characterization of Complex
  Driving Scenarios
Probabilistic Metamodels for an Efficient Characterization of Complex Driving Scenarios
Max Winkelmann
Mike Kohlhoff
H. Tadjine
Steffen Müller
29
9
0
06 Oct 2021
Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning
Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning
Chi-Ken Lu
Patrick Shafto
BDL
27
4
0
01 Oct 2021
Non-stationary Gaussian process discriminant analysis with variable
  selection for high-dimensional functional data
Non-stationary Gaussian process discriminant analysis with variable selection for high-dimensional functional data
Weichang Yu
S. Wade
H. Bondell
Lamiae Azizi
17
3
0
29 Sep 2021
A theory of representation learning gives a deep generalisation of
  kernel methods
A theory of representation learning gives a deep generalisation of kernel methods
Adam X. Yang
Maxime Robeyns
Edward Milsom
Ben Anson
Nandi Schoots
Laurence Aitchison
BDL
32
10
0
30 Aug 2021
A variational approximate posterior for the deep Wishart process
A variational approximate posterior for the deep Wishart process
Sebastian W. Ober
Laurence Aitchison
BDL
17
11
0
21 Jul 2021
Subset-of-Data Variational Inference for Deep Gaussian-Processes
  Regression
Subset-of-Data Variational Inference for Deep Gaussian-Processes Regression
Ayush Jain
P. K. Srijith
Mohammad Emtiyaz Khan
BDL
GP
16
0
0
17 Jul 2021
Input Dependent Sparse Gaussian Processes
Input Dependent Sparse Gaussian Processes
B. Jafrasteh
Carlos Villacampa-Calvo
Daniel Hernández-Lobato
UQCV
20
5
0
15 Jul 2021
Deep Gaussian Process Emulation using Stochastic Imputation
Deep Gaussian Process Emulation using Stochastic Imputation
Deyu Ming
D. Williamson
S. Guillas
9
30
0
04 Jul 2021
Previous
12345
Next