Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.08933
Cited By
v1
v2 (latest)
Doubly Stochastic Variational Inference for Deep Gaussian Processes
24 May 2017
Hugh Salimbeni
M. Deisenroth
BDL
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Doubly Stochastic Variational Inference for Deep Gaussian Processes"
50 / 232 papers shown
Title
Accurate and Uncertainty-Aware Multi-Task Prediction of HEA Properties Using Prior-Guided Deep Gaussian Processes
Sk Md Ahnaf Akif Alvi
Mrinalini Mulukutla
Nicolas Flores
Danial Khatamsaz
Jan Janssen
Danny Perez
D. Allaire
V. Attari
Raymundo Arroyave
AI4CE
10
0
0
13 Jun 2025
STACI: Spatio-Temporal Aleatoric Conformal Inference
Brandon Feng
David K. Park
Xihaier Luo
Arantxa Urdangarin
Shinjae Yoo
Brian J. Reich
27
0
0
27 May 2025
Active Learning for Multiple Change Point Detection in Non-stationary Time Series with Deep Gaussian Processes
Hao Zhao
Rong Pan
20
0
0
26 May 2025
Integrative Analysis and Imputation of Multiple Data Streams via Deep Gaussian Processes
Ali Akbar Septiandri
Deyu Ming
F. Alejandro DiazDelaO
Takoua Jendoubi
Samiran Ray
54
0
0
17 May 2025
Evaluating Uncertainty in Deep Gaussian Processes
Matthijs van der Lende
Jeremias Lino Ferrao
Niclas Müller-Hof
UQCV
70
0
0
24 Apr 2025
Stochastic Process Learning via Operator Flow Matching
Yaozhong Shi
Zachary E. Ross
D. Asimaki
Kamyar Azizzadenesheli
166
3
0
10 Jan 2025
Residual Deep Gaussian Processes on Manifolds
Kacper Wyrwal
Andreas Krause
Viacheslav Borovitskiy
BDL
131
0
0
31 Oct 2024
Deep Q-Exponential Processes
Zhi Chang
Chukwudi Obite
Shuang Zhou
Shiwei Lan
BDL
69
0
0
29 Oct 2024
Hyperboloid GPLVM for Discovering Continuous Hierarchies via Nonparametric Estimation
Koshi Watanabe
Keisuke Maeda
Takahiro Ogawa
Miki Haseyama
404
0
0
22 Oct 2024
Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel Machines
Edward Milsom
Ben Anson
Laurence Aitchison
57
0
0
08 Oct 2024
Physics-Informed Variational State-Space Gaussian Processes
Oliver Hamelijnck
Arno Solin
Theodoros Damoulas
72
1
0
20 Sep 2024
Amortized Variational Inference for Deep Gaussian Processes
Qiuxian Meng
Yongyou Zhang
35
0
0
18 Sep 2024
Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling
Jian Xu
Shian Du
Junmei Yang
Qianli Ma
Delu Zeng
BDL
57
0
0
13 Aug 2024
Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations
Jian Xu
Zhiqi Lin
Min Chen
Junmei Yang
Delu Zeng
John Paisley
60
0
0
12 Aug 2024
Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion Posterior Sampling
Jian Xu
Zhiqi Lin
Shigui Li
Min Chen
Junmei Yang
Delu Zeng
John Paisley
BDL
66
0
0
07 Aug 2024
Monotonic warpings for additive and deep Gaussian processes
Chang Liu
Lauren J. Beesley
Annie S. Booth
Robert B. Gramacy
Yan Zhao
64
2
0
02 Aug 2024
Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling with Denoising Diffusion Variational Inference
Jian Xu
Delu Zeng
John Paisley
DiffM
90
1
0
24 Jul 2024
Scalable Multi-Output Gaussian Processes with Stochastic Variational Inference
Xiaoyu Jiang
Sokratia Georgaka
Magnus Rattray
Mauricio A. Alvarez
71
0
0
02 Jul 2024
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
170
0
0
01 Jul 2024
Latent Variable Double Gaussian Process Model for Decoding Complex Neural Data
Navid Ziaei
Joshua J. Stim
Melanie D. Goodman-Keiser
S. Sponheim
A. Widge
Sasoun Krikorian
Ali Yousefi
40
0
0
08 May 2024
Multi-fidelity Gaussian process surrogate modeling for regression problems in physics
Kislaya Ravi
Vladyslav Fediukov
Felix Dietrich
T. Neckel
Fabian Buse
Michael Bergmann
H. Bungartz
AI4CE
64
6
0
18 Apr 2024
Universal Functional Regression with Neural Operator Flows
Yaozhong Shi
Angela F. Gao
Zachary E. Ross
Kamyar Azizzadenesheli
104
5
0
03 Apr 2024
On Uncertainty Quantification for Near-Bayes Optimal Algorithms
Ziyu Wang
Chris Holmes
UQCV
105
3
0
28 Mar 2024
Deep Horseshoe Gaussian Processes
Ismael Castillo
Thibault Randrianarisoa
BDL
UQCV
108
5
0
04 Mar 2024
Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling
Ruijia Niu
D. Wu
Kai Kim
Yi-An Ma
D. Watson‐Parris
Rose Yu
AI4CE
85
4
0
29 Feb 2024
Stopping Bayesian Optimization with Probabilistic Regret Bounds
James T. Wilson
65
4
0
26 Feb 2024
Gradient-enhanced deep Gaussian processes for multifidelity modelling
Viv Bone
Chris van der Heide
Kieran Mackle
Ingo Jahn
P. Dower
Chris Manzie
56
1
0
25 Feb 2024
Multi-Fidelity Methods for Optimization: A Survey
Ke Li
Fan Li
AI4CE
72
7
0
15 Feb 2024
Flexible Infinite-Width Graph Convolutional Neural Networks
Ben Anson
Edward Milsom
Laurence Aitchison
SSL
GNN
71
1
0
09 Feb 2024
Self-Attention through Kernel-Eigen Pair Sparse Variational Gaussian Processes
Yingyi Chen
Qinghua Tao
F. Tonin
Johan A. K. Suykens
63
1
0
02 Feb 2024
A Bayesian Gaussian Process-Based Latent Discriminative Generative Decoder (LDGD) Model for High-Dimensional Data
Navid Ziaei
Behzad Nazari
Uri T. Eden
A. Widge
Ali Yousefi
45
3
0
29 Jan 2024
Sparse Variational Student-t Processes
Jian Xu
Delu Zeng
123
1
0
09 Dec 2023
Deep Latent Force Models: ODE-based Process Convolutions for Bayesian Deep Learning
Thomas Baldwin-McDonald
Mauricio A. Álvarez
104
1
0
24 Nov 2023
Deep Transformed Gaussian Processes
Francisco Javier Sáez-Maldonado
Juan Maroñas
Daniel Hernández-Lobato
91
0
0
27 Oct 2023
Thin and Deep Gaussian Processes
Daniel Augusto R. M. A. de Souza
Alexander Nikitin
S. T. John
Magnus Ross
Mauricio A. Alvarez
M. Deisenroth
Joao P. P. Gomes
Diego Mesquita
C. L. C. Mattos
80
5
0
17 Oct 2023
On permutation symmetries in Bayesian neural network posteriors: a variational perspective
Simone Rossi
Ankit Singh
T. Hannagan
69
3
0
16 Oct 2023
Safe Exploration in Reinforcement Learning: A Generalized Formulation and Algorithms
Akifumi Wachi
Wataru Hashimoto
Xun Shen
Kazumune Hashimoto
79
11
0
05 Oct 2023
Neural Operator Variational Inference based on Regularized Stein Discrepancy for Deep Gaussian Processes
Jian Xu
Shian Du
Junmei Yang
Qianli Ma
Delu Zeng
BDL
50
1
0
22 Sep 2023
A Unifying Perspective on Non-Stationary Kernels for Deeper Gaussian Processes
M. Noack
Hengrui Luo
M. Risser
GP
104
13
0
18 Sep 2023
Sampling-Free Probabilistic Deep State-Space Models
Andreas Look
M. Kandemir
Barbara Rakitsch
Jan Peters
60
2
0
15 Sep 2023
To Predict or to Reject: Causal Effect Estimation with Uncertainty on Networked Data
Hechuan Wen
Tong Chen
Li Kheng Chai
S. Sadiq
Kai Zheng
Hongzhi Yin
CML
89
2
0
15 Sep 2023
Out of Distribution Detection via Domain-Informed Gaussian Process State Space Models
Alonso Marco
Elias Morley
Claire Tomlin
94
3
0
13 Sep 2023
On the meaning of uncertainty for ethical AI: philosophy and practice
Cassandra Bird
Daniel Williamson
Sabina Leonelli
37
1
0
11 Sep 2023
Exploring the Efficacy of Statistical and Deep Learning Methods for Large Spatial Datasets: A Case Study
A. Hazra
Pratik Nag
Rishikesh Yadav
Ying Sun
66
4
0
10 Aug 2023
A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia
Diana McSpadden
S. Goldenberg
Bina Roy
M. Schram
J. Goodall
H. Lipford
AI4CE
55
4
0
26 Jul 2023
Adaptive Robotic Information Gathering via Non-Stationary Gaussian Processes
Weizhe (Wesley) Chen
Roni Khardon
Lantao Liu
103
10
0
02 Jun 2023
Linked Deep Gaussian Process Emulation for Model Networks
Deyu Ming
D. Williamson
55
0
0
02 Jun 2023
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Felix Jimenez
Matthias Katzfuss
BDL
UQCV
109
1
0
26 May 2023
Distribution-Free Model-Agnostic Regression Calibration via Nonparametric Methods
Shang Liu
Zhongze Cai
Xiaocheng Li
43
4
0
20 May 2023
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
116
81
0
07 May 2023
1
2
3
4
5
Next