ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.08933
  4. Cited By
Doubly Stochastic Variational Inference for Deep Gaussian Processes

Doubly Stochastic Variational Inference for Deep Gaussian Processes

24 May 2017
Hugh Salimbeni
M. Deisenroth
    BDL
    GP
ArXivPDFHTML

Papers citing "Doubly Stochastic Variational Inference for Deep Gaussian Processes"

50 / 230 papers shown
Title
Integrative Analysis and Imputation of Multiple Data Streams via Deep Gaussian Processes
Integrative Analysis and Imputation of Multiple Data Streams via Deep Gaussian Processes
Ali Akbar Septiandri
Deyu Ming
F. Alejandro DiazDelaO
Takoua Jendoubi
Samiran Ray
2
0
0
17 May 2025
Evaluating Uncertainty in Deep Gaussian Processes
Evaluating Uncertainty in Deep Gaussian Processes
Matthijs van der Lende
Jeremias Lino Ferrao
Niclas Müller-Hof
UQCV
35
0
0
24 Apr 2025
Stochastic Process Learning via Operator Flow Matching
Stochastic Process Learning via Operator Flow Matching
Yaozhong Shi
Zachary E. Ross
D. Asimaki
Kamyar Azizzadenesheli
52
1
0
10 Jan 2025
Residual Deep Gaussian Processes on Manifolds
Residual Deep Gaussian Processes on Manifolds
Kacper Wyrwal
Andreas Krause
Viacheslav Borovitskiy
BDL
49
0
0
31 Oct 2024
Deep Q-Exponential Processes
Deep Q-Exponential Processes
Zhi Chang
Chukwudi Obite
Shuang Zhou
Shiwei Lan
BDL
28
0
0
29 Oct 2024
Hyperboloid GPLVM for Discovering Continuous Hierarchies via
  Nonparametric Estimation
Hyperboloid GPLVM for Discovering Continuous Hierarchies via Nonparametric Estimation
Koshi Watanabe
Keisuke Maeda
Takahiro Ogawa
Miki Haseyama
135
0
0
22 Oct 2024
Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel
  Machines
Stochastic Kernel Regularisation Improves Generalisation in Deep Kernel Machines
Edward Milsom
Ben Anson
Laurence Aitchison
28
0
0
08 Oct 2024
Physics-Informed Variational State-Space Gaussian Processes
Physics-Informed Variational State-Space Gaussian Processes
Oliver Hamelijnck
Arno Solin
Theodoros Damoulas
31
0
0
20 Sep 2024
Amortized Variational Inference for Deep Gaussian Processes
Amortized Variational Inference for Deep Gaussian Processes
Qiuxian Meng
Yongyou Zhang
28
0
0
18 Sep 2024
Variational Learning of Gaussian Process Latent Variable Models through
  Stochastic Gradient Annealed Importance Sampling
Variational Learning of Gaussian Process Latent Variable Models through Stochastic Gradient Annealed Importance Sampling
Jian Xu
Shian Du
Junmei Yang
Qianli Ma
Delu Zeng
BDL
31
0
0
13 Aug 2024
Fully Bayesian Differential Gaussian Processes through Stochastic
  Differential Equations
Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations
Jian Xu
Zhiqi Lin
Min Chen
Junmei Yang
Delu Zeng
John Paisley
32
0
0
12 Aug 2024
Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion
  Posterior Sampling
Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion Posterior Sampling
Jian Xu
Zhiqi Lin
Shigui Li
Min Chen
Junmei Yang
Delu Zeng
John Paisley
BDL
28
0
0
07 Aug 2024
Monotonic warpings for additive and deep Gaussian processes
Monotonic warpings for additive and deep Gaussian processes
Chang Liu
Lauren J. Beesley
Annie S. Booth
Robert B. Gramacy
Yan Zhao
27
2
0
02 Aug 2024
Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling
  with Denoising Diffusion Variational Inference
Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling with Denoising Diffusion Variational Inference
Jian Xu
Delu Zeng
John Paisley
DiffM
31
1
0
24 Jul 2024
Scalable Multi-Output Gaussian Processes with Stochastic Variational
  Inference
Scalable Multi-Output Gaussian Processes with Stochastic Variational Inference
Xiaoyu Jiang
Sokratia Georgaka
Magnus Rattray
Mauricio A. Alvarez
31
0
0
02 Jul 2024
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
76
0
0
01 Jul 2024
Latent Variable Double Gaussian Process Model for Decoding Complex
  Neural Data
Latent Variable Double Gaussian Process Model for Decoding Complex Neural Data
Navid Ziaei
Joshua J. Stim
Melanie D. Goodman-Keiser
S. Sponheim
A. Widge
Sasoun Krikorian
Ali Yousefi
20
0
0
08 May 2024
Multi-fidelity Gaussian process surrogate modeling for regression
  problems in physics
Multi-fidelity Gaussian process surrogate modeling for regression problems in physics
Kislaya Ravi
Vladyslav Fediukov
Felix Dietrich
T. Neckel
Fabian Buse
Michael Bergmann
H. Bungartz
AI4CE
39
6
0
18 Apr 2024
Universal Functional Regression with Neural Operator Flows
Universal Functional Regression with Neural Operator Flows
Yaozhong Shi
Angela F. Gao
Zachary E. Ross
Kamyar Azizzadenesheli
37
3
0
03 Apr 2024
On Uncertainty Quantification for Near-Bayes Optimal Algorithms
On Uncertainty Quantification for Near-Bayes Optimal Algorithms
Ziyu Wang
Chris Holmes
UQCV
42
2
0
28 Mar 2024
Deep Horseshoe Gaussian Processes
Deep Horseshoe Gaussian Processes
Ismael Castillo
Thibault Randrianarisoa
BDL
UQCV
42
5
0
04 Mar 2024
Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling
Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling
Ruijia Niu
D. Wu
Kai Kim
Yi Ma
D. Watson‐Parris
Rose Yu
AI4CE
37
2
0
29 Feb 2024
Stopping Bayesian Optimization with Probabilistic Regret Bounds
Stopping Bayesian Optimization with Probabilistic Regret Bounds
James T. Wilson
41
4
0
26 Feb 2024
Gradient-enhanced deep Gaussian processes for multifidelity modelling
Gradient-enhanced deep Gaussian processes for multifidelity modelling
Viv Bone
Chris van der Heide
Kieran Mackle
Ingo Jahn
P. Dower
Chris Manzie
25
1
0
25 Feb 2024
Multi-Fidelity Methods for Optimization: A Survey
Multi-Fidelity Methods for Optimization: A Survey
Ke Li
Fan Li
AI4CE
35
6
0
15 Feb 2024
Flexible infinite-width graph convolutional networks and the importance
  of representation learning
Flexible infinite-width graph convolutional networks and the importance of representation learning
Ben Anson
Edward Milsom
Laurence Aitchison
SSL
GNN
32
1
0
09 Feb 2024
Self-Attention through Kernel-Eigen Pair Sparse Variational Gaussian
  Processes
Self-Attention through Kernel-Eigen Pair Sparse Variational Gaussian Processes
Yingyi Chen
Qinghua Tao
F. Tonin
Johan A. K. Suykens
22
1
0
02 Feb 2024
A Bayesian Gaussian Process-Based Latent Discriminative Generative
  Decoder (LDGD) Model for High-Dimensional Data
A Bayesian Gaussian Process-Based Latent Discriminative Generative Decoder (LDGD) Model for High-Dimensional Data
Navid Ziaei
Behzad Nazari
Uri T. Eden
A. Widge
Ali Yousefi
20
3
0
29 Jan 2024
Sparse Variational Student-t Processes
Sparse Variational Student-t Processes
Jian Xu
Delu Zeng
26
1
0
09 Dec 2023
Deep Latent Force Models: ODE-based Process Convolutions for Bayesian
  Deep Learning
Deep Latent Force Models: ODE-based Process Convolutions for Bayesian Deep Learning
Thomas Baldwin-McDonald
Mauricio A. Álvarez
39
1
0
24 Nov 2023
Deep Transformed Gaussian Processes
Deep Transformed Gaussian Processes
Francisco Javier Sáez-Maldonado
Juan Maroñas
Daniel Hernández-Lobato
15
0
0
27 Oct 2023
Thin and Deep Gaussian Processes
Thin and Deep Gaussian Processes
Daniel Augusto R. M. A. de Souza
Alexander Nikitin
S. T. John
Magnus Ross
Mauricio A. Alvarez
M. Deisenroth
Joao P. P. Gomes
Diego Mesquita
C. L. C. Mattos
22
5
0
17 Oct 2023
On permutation symmetries in Bayesian neural network posteriors: a
  variational perspective
On permutation symmetries in Bayesian neural network posteriors: a variational perspective
Simone Rossi
Ankit Singh
T. Hannagan
32
2
0
16 Oct 2023
Safe Exploration in Reinforcement Learning: A Generalized Formulation
  and Algorithms
Safe Exploration in Reinforcement Learning: A Generalized Formulation and Algorithms
Akifumi Wachi
Wataru Hashimoto
Xun Shen
Kazumune Hashimoto
22
9
0
05 Oct 2023
Neural Operator Variational Inference based on Regularized Stein
  Discrepancy for Deep Gaussian Processes
Neural Operator Variational Inference based on Regularized Stein Discrepancy for Deep Gaussian Processes
Jian Xu
Shian Du
Junmei Yang
Qianli Ma
Delu Zeng
BDL
16
1
0
22 Sep 2023
A Unifying Perspective on Non-Stationary Kernels for Deeper Gaussian
  Processes
A Unifying Perspective on Non-Stationary Kernels for Deeper Gaussian Processes
M. Noack
Hengrui Luo
M. Risser
GP
32
11
0
18 Sep 2023
Sampling-Free Probabilistic Deep State-Space Models
Sampling-Free Probabilistic Deep State-Space Models
Andreas Look
M. Kandemir
Barbara Rakitsch
Jan Peters
16
2
0
15 Sep 2023
To Predict or to Reject: Causal Effect Estimation with Uncertainty on
  Networked Data
To Predict or to Reject: Causal Effect Estimation with Uncertainty on Networked Data
Hechuan Wen
Tong Chen
Li Kheng Chai
S. Sadiq
Kai Zheng
Hongzhi Yin
CML
24
1
0
15 Sep 2023
Out of Distribution Detection via Domain-Informed Gaussian Process State
  Space Models
Out of Distribution Detection via Domain-Informed Gaussian Process State Space Models
Alonso Marco
Elias Morley
Claire Tomlin
34
2
0
13 Sep 2023
On the meaning of uncertainty for ethical AI: philosophy and practice
On the meaning of uncertainty for ethical AI: philosophy and practice
Cassandra Bird
Daniel Williamson
Sabina Leonelli
6
1
0
11 Sep 2023
Exploring the Efficacy of Statistical and Deep Learning Methods for
  Large Spatial Datasets: A Case Study
Exploring the Efficacy of Statistical and Deep Learning Methods for Large Spatial Datasets: A Case Study
A. Hazra
Pratik Nag
Rishikesh Yadav
Ying Sun
23
3
0
10 Aug 2023
A comparison of machine learning surrogate models of street-scale
  flooding in Norfolk, Virginia
A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia
Diana McSpadden
S. Goldenberg
Bina Roy
M. Schram
J. Goodall
H. Lipford
AI4CE
36
3
0
26 Jul 2023
Adaptive Robotic Information Gathering via Non-Stationary Gaussian
  Processes
Adaptive Robotic Information Gathering via Non-Stationary Gaussian Processes
Weizhe (Wesley) Chen
R. Khardon
Lantao Liu
29
9
0
02 Jun 2023
Linked Deep Gaussian Process Emulation for Model Networks
Linked Deep Gaussian Process Emulation for Model Networks
Deyu Ming
D. Williamson
13
0
0
02 Jun 2023
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Felix Jimenez
Matthias Katzfuss
BDL
UQCV
64
1
0
26 May 2023
Distribution-Free Model-Agnostic Regression Calibration via
  Nonparametric Methods
Distribution-Free Model-Agnostic Regression Calibration via Nonparametric Methods
Shang Liu
Zhongze Cai
Xiaocheng Li
24
4
0
20 May 2023
Uncertainty Quantification in Machine Learning for Engineering Design
  and Health Prognostics: A Tutorial
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
33
75
0
07 May 2023
Actually Sparse Variational Gaussian Processes
Actually Sparse Variational Gaussian Processes
Harry Jake Cunningham
Daniel Augusto R. M. A. de Souza
So Takao
Mark van der Wilk
M. Deisenroth
32
5
0
11 Apr 2023
Calibrating Transformers via Sparse Gaussian Processes
Calibrating Transformers via Sparse Gaussian Processes
Wenlong Chen
Yingzhen Li
UQCV
32
12
0
04 Mar 2023
Learning Energy Conserving Dynamics Efficiently with Hamiltonian
  Gaussian Processes
Learning Energy Conserving Dynamics Efficiently with Hamiltonian Gaussian Processes
M. Ross
Markus Heinonen
18
2
0
03 Mar 2023
12345
Next