ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.05888
11
6

A Sparse Expansion For Deep Gaussian Processes

11 December 2021
Liang Ding
Rui Tuo
Shahin Shahrampour
ArXivPDFHTML
Abstract

In this work, we use Deep Gaussian Processes (DGPs) as statistical surrogates for stochastic processes with complex distributions. Conventional inferential methods for DGP models can suffer from high computational complexity as they require large-scale operations with kernel matrices for training and inference. In this work, we propose an efficient scheme for accurate inference and efficient training based on a range of Gaussian Processes, called the Tensor Markov Gaussian Processes (TMGP). We construct an induced approximation of TMGP referred to as the hierarchical expansion. Next, we develop a deep TMGP (DTMGP) model as the composition of multiple hierarchical expansion of TMGPs. The proposed DTMGP model has the following properties: (1) the outputs of each activation function are deterministic while the weights are chosen independently from standard Gaussian distribution; (2) in training or prediction, only polylog(M) (out of M) activation functions have non-zero outputs, which significantly boosts the computational efficiency. Our numerical experiments on synthetic models and real datasets show the superior computational efficiency of DTMGP over existing DGP models.

View on arXiv
Comments on this paper