Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.08933
Cited By
v1
v2 (latest)
Doubly Stochastic Variational Inference for Deep Gaussian Processes
24 May 2017
Hugh Salimbeni
M. Deisenroth
BDL
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Doubly Stochastic Variational Inference for Deep Gaussian Processes"
50 / 232 papers shown
Title
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir
N. Durrande
J. Hensman
76
56
0
30 Jun 2020
Multi-fidelity modeling with different input domain definitions using Deep Gaussian Processes
Ali Hebbal
Loïc Brevault
M. Balesdent
El-Ghazali Talbi
N. Melab
AI4CE
68
36
0
29 Jun 2020
Variational Autoencoding of PDE Inverse Problems
Daniel J. Tait
Theodoros Damoulas
AI4CE
49
12
0
28 Jun 2020
Stochastic Differential Equations with Variational Wishart Diffusions
Martin Jørgensen
M. Deisenroth
Hugh Salimbeni
DiffM
61
8
0
26 Jun 2020
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
101
10
0
18 Jun 2020
Calibrated Reliable Regression using Maximum Mean Discrepancy
Peng Cui
Wenbo Hu
Jun Zhu
UQCV
75
49
0
18 Jun 2020
A Deterministic Approximation to Neural SDEs
Andreas Look
M. Kandemir
Barbara Rakitsch
Jan Peters
DiffM
58
4
0
16 Jun 2020
Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties
J. Lindinger
David Reeb
C. Lippert
Barbara Rakitsch
BDL
UQCV
74
8
0
22 May 2020
Deep Latent-Variable Kernel Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
BDL
59
8
0
18 May 2020
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
116
60
0
17 May 2020
Utterance-level Sequential Modeling For Deep Gaussian Process Based Speech Synthesis Using Simple Recurrent Unit
Tomoki Koriyama
Hiroshi Saruwatari
BDL
64
5
0
22 Apr 2020
Advances in Bayesian Probabilistic Modeling for Industrial Applications
Sayan Ghosh
Piyush Pandita
Steven Atkinson
W. Subber
Yiming Zhang
Natarajan Chennimalai-Kumar
S. Chakrabarti
Liping Wang
AI4CE
39
30
0
26 Mar 2020
Deep Bayesian Gaussian Processes for Uncertainty Estimation in Electronic Health Records
Yikuan Li
Shishir Rao
A. Hassaine
R. Ramakrishnan
Yajie Zhu
D. Canoy
G. Salimi-Khorshidi
Thomas Lukasiewicz
K. Rahimi
BDL
UQCV
76
36
0
23 Mar 2020
Energy-Based Processes for Exchangeable Data
Mengjiao Yang
Bo Dai
H. Dai
Dale Schuurmans
83
12
0
17 Mar 2020
Amortized variance reduction for doubly stochastic objectives
Ayman Boustati
Sattar Vakili
J. Hensman
S. T. John
57
5
0
09 Mar 2020
Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations
Simone Rossi
Markus Heinonen
Edwin V. Bonilla
Zheyan Shen
Maurizio Filippone
UQCV
BDL
49
0
0
06 Mar 2020
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
102
95
0
02 Mar 2020
Time Series Data Augmentation for Deep Learning: A Survey
Qingsong Wen
Liang Sun
Fan Yang
Xiaomin Song
Jing Gao
Xue Wang
Huan Xu
AI4TS
122
648
0
27 Feb 2020
Deep Sigma Point Processes
M. Jankowiak
Geoff Pleiss
Jacob R. Gardner
BDL
69
22
0
21 Feb 2020
Estimating Uncertainty Intervals from Collaborating Networks
Tianhui Zhou
Yitong Li
Yuan Wu
David Carlson
UQCV
177
17
0
12 Feb 2020
Graph Convolutional Gaussian Processes For Link Prediction
Felix L. Opolka
Pietro Lio
GNN
81
15
0
11 Feb 2020
Conditional Deep Gaussian Processes: multi-fidelity kernel learning
Chi-Ken Lu
Patrick Shafto
60
5
0
07 Feb 2020
Transport Gaussian Processes for Regression
Gonzalo Rios
GP
61
6
0
30 Jan 2020
Doubly Sparse Variational Gaussian Processes
Vincent Adam
Stefanos Eleftheriadis
N. Durrande
A. Artemev
J. Hensman
85
26
0
15 Jan 2020
Bayesian task embedding for few-shot Bayesian optimization
Steven Atkinson
Sayan Ghosh
Natarajan Chennimalai-Kumar
Genghis Khan
Liping Wang
BDL
26
1
0
02 Jan 2020
Warped Input Gaussian Processes for Time Series Forecasting
David Tolpin
AI4TS
45
2
0
05 Dec 2019
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
38
14
0
05 Nov 2019
Implicit Posterior Variational Inference for Deep Gaussian Processes
Haibin Yu
Yizhou Chen
Zhongxiang Dai
K. H. Low
Patrick Jaillet
88
43
0
26 Oct 2019
The Renyi Gaussian Process: Towards Improved Generalization
Xubo Yue
Raed Al Kontar
134
3
0
15 Oct 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
75
93
0
14 Oct 2019
Deep Kernels with Probabilistic Embeddings for Small-Data Learning
Ankur Mallick
Chaitanya Dwivedi
B. Kailkhura
Gauri Joshi
T. Y. Han
BDL
UQCV
44
8
0
13 Oct 2019
On the expected behaviour of noise regularised deep neural networks as Gaussian processes
Arnu Pretorius
Herman Kamper
Steve Kroon
66
9
0
12 Oct 2019
PAC-Bayesian Bounds for Deep Gaussian Processes
R. Foll
Ingo Steinwart
BDL
42
1
0
22 Sep 2019
Compositional uncertainty in deep Gaussian processes
Ivan Ustyuzhaninov
Ieva Kazlauskaite
Markus Kaiser
Erik Bodin
Neill D. F. Campbell
Carl Henrik Ek
UQCV
95
23
0
17 Sep 2019
Deep kernel learning for integral measurements
Carl Jidling
J. Hendriks
Thomas B. Schon
A. Wills
69
7
0
04 Sep 2019
Structured Variational Inference in Unstable Gaussian Process State Space Models
Silvan Melchior
Sebastian Curi
Felix Berkenkamp
Andreas Krause
87
4
0
16 Jul 2019
Learning GPLVM with arbitrary kernels using the unscented transformation
Daniel Augusto R. M. A. de Souza
Diego Mesquita
C. L. C. Mattos
Joao P. P. Gomes
61
0
0
03 Jul 2019
Multi-resolution Multi-task Gaussian Processes
Oliver Hamelijnck
Theodoros Damoulas
Kangrui Wang
Mark Girolami
57
38
0
19 Jun 2019
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
79
30
0
13 Jun 2019
Deep Compositional Spatial Models
A. Zammit‐Mangion
T. L. J. Ng
Quan Vu
Maurizio Filippone
126
57
0
06 Jun 2019
Neural Likelihoods for Multi-Output Gaussian Processes
M. Jankowiak
Jacob R. Gardner
UQCV
BDL
58
3
0
31 May 2019
Monotonic Gaussian Process Flow
Ivan Ustyuzhaninov
Ieva Kazlauskaite
Carl Henrik Ek
Neill D. F. Campbell
95
14
0
30 May 2019
Non-linear Multitask Learning with Deep Gaussian Processes
Ayman Boustati
Theodoros Damoulas
R. Savage
BDL
46
6
0
29 May 2019
Scalable Training of Inference Networks for Gaussian-Process Models
Jiaxin Shi
Mohammad Emtiyaz Khan
Jun Zhu
BDL
49
18
0
27 May 2019
Interpretable deep Gaussian processes with moments
Chi-Ken Lu
Scott Cheng-Hsin Yang
Xiaoran Hao
Patrick Shafto
84
19
0
27 May 2019
Learning spectrograms with convolutional spectral kernels
Zheyan Shen
Markus Heinonen
Samuel Kaski
64
9
0
23 May 2019
Deep Gaussian Processes with Importance-Weighted Variational Inference
Hugh Salimbeni
Vincent Dutordoir
J. Hensman
M. Deisenroth
BDL
99
44
0
14 May 2019
Bayesian Optimization using Deep Gaussian Processes
Ali Hebbal
Loïc Brevault
M. Balesdent
El-Ghazali Talbi
N. Melab
GP
95
70
0
07 May 2019
Robust Deep Gaussian Processes
Jeremias Knoblauch
GP
62
17
0
04 Apr 2019
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRL
BDL
109
106
0
03 Apr 2019
Previous
1
2
3
4
5
Next