ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.07457
16
13

Triangulation candidates for Bayesian optimization

14 December 2021
R. Gramacy
Anna Sauer
Nathan Wycoff
ArXivPDFHTML
Abstract

Bayesian optimization involves "inner optimization" over a new-data acquisition criterion which is non-convex/highly multi-modal, may be non-differentiable, or may otherwise thwart local numerical optimizers. In such cases it is common to replace continuous search with a discrete one over random candidates. Here we propose using candidates based on a Delaunay triangulation of the existing input design. We detail the construction of these "tricands" and demonstrate empirically how they outperform both numerically optimized acquisitions and random candidate-based alternatives, and are well-suited for hybrid schemes, on benchmark synthetic and real simulation experiments.

View on arXiv
Comments on this paper