ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.08933
  4. Cited By
Doubly Stochastic Variational Inference for Deep Gaussian Processes
v1v2 (latest)

Doubly Stochastic Variational Inference for Deep Gaussian Processes

24 May 2017
Hugh Salimbeni
M. Deisenroth
    BDLGP
ArXiv (abs)PDFHTML

Papers citing "Doubly Stochastic Variational Inference for Deep Gaussian Processes"

50 / 232 papers shown
Title
Subset-of-Data Variational Inference for Deep Gaussian-Processes
  Regression
Subset-of-Data Variational Inference for Deep Gaussian-Processes Regression
Ayush Jain
P. K. Srijith
Mohammad Emtiyaz Khan
BDLGP
45
0
0
17 Jul 2021
Input Dependent Sparse Gaussian Processes
Input Dependent Sparse Gaussian Processes
B. Jafrasteh
Carlos Villacampa-Calvo
Daniel Hernández-Lobato
UQCV
53
5
0
15 Jul 2021
Deep Gaussian Process Emulation using Stochastic Imputation
Deep Gaussian Process Emulation using Stochastic Imputation
Deyu Ming
D. Williamson
S. Guillas
67
30
0
04 Jul 2021
Deep Gaussian Processes: A Survey
Deep Gaussian Processes: A Survey
Kalvik Jakkala
AI4CEGPBDL
78
20
0
21 Jun 2021
SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice
  for Scalable Gaussian Processes
SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice for Scalable Gaussian Processes
Sanyam Kapoor
Marc Finzi
Ke Alexander Wang
A. Wilson
74
12
0
12 Jun 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian
  Process Perspective
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
73
27
0
11 Jun 2021
Scalable Variational Gaussian Processes via Harmonic Kernel
  Decomposition
Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition
Shengyang Sun
Jiaxin Shi
A. Wilson
Roger C. Grosse
BDL
31
7
0
10 Jun 2021
Compositional Modeling of Nonlinear Dynamical Systems with ODE-based
  Random Features
Compositional Modeling of Nonlinear Dynamical Systems with ODE-based Random Features
Thomas M. McDonald
Mauricio A. Alvarez
85
10
0
10 Jun 2021
How to Evaluate Uncertainty Estimates in Machine Learning for
  Regression?
How to Evaluate Uncertainty Estimates in Machine Learning for Regression?
Laurens Sluijterman
Eric Cator
Tom Heskes
UQCV
75
24
0
07 Jun 2021
Self-Attention Between Datapoints: Going Beyond Individual Input-Output
  Pairs in Deep Learning
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning
Jannik Kossen
Neil Band
Clare Lyle
Aidan Gomez
Tom Rainforth
Y. Gal
OOD3DPC
120
142
0
04 Jun 2021
Inferring Black Hole Properties from Astronomical Multivariate Time
  Series with Bayesian Attentive Neural Processes
Inferring Black Hole Properties from Astronomical Multivariate Time Series with Bayesian Attentive Neural Processes
Ji Won Park
A. Villar
Yin Li
Yan-Fei Jiang
S. Ho
J. Lin
P. Marshall
A. Roodman
BDL
43
5
0
02 Jun 2021
Stochastic Collapsed Variational Inference for Structured Gaussian
  Process Regression Network
Stochastic Collapsed Variational Inference for Structured Gaussian Process Regression Network
Rui Meng
Herbert Lee
K. Bouchard
46
2
0
01 Jun 2021
Sparse Uncertainty Representation in Deep Learning with Inducing Weights
Sparse Uncertainty Representation in Deep Learning with Inducing Weights
H. Ritter
Martin Kukla
Chen Zhang
Yingzhen Li
UQCVBDL
90
17
0
30 May 2021
Hierarchical Non-Stationary Temporal Gaussian Processes With
  $L^1$-Regularization
Hierarchical Non-Stationary Temporal Gaussian Processes With L1L^1L1-Regularization
Zheng Zhao
Rui Gao
Simo Särkkä
46
0
0
20 May 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCVBDL
137
134
0
14 May 2021
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Vincent Dutordoir
J. Hensman
Mark van der Wilk
Carl Henrik Ek
Zoubin Ghahramani
N. Durrande
BDLUQCV
106
31
0
10 May 2021
Exploring Uncertainty in Deep Learning for Construction of Prediction
  Intervals
Exploring Uncertainty in Deep Learning for Construction of Prediction Intervals
Yuandu Lai
Yucheng Shi
Yahong Han
Yunfeng Shao
Meiyu Qi
Bingshuai Li
UQCV
65
15
0
27 Apr 2021
Convolutional Normalizing Flows for Deep Gaussian Processes
Convolutional Normalizing Flows for Deep Gaussian Processes
Haibin Yu
Dapeng Liu
Yizhou Chen
K. H. Low
Patrick Jaillet
BDL
64
6
0
17 Apr 2021
Deep Gaussian Processes for Biogeophysical Parameter Retrieval and Model
  Inversion
Deep Gaussian Processes for Biogeophysical Parameter Retrieval and Model Inversion
D. Svendsen
Pablo Morales-Álvarez
A. Ruescas
Rafael Molina
Gustau Camps-Valls
141
30
0
16 Apr 2021
GPflux: A Library for Deep Gaussian Processes
GPflux: A Library for Deep Gaussian Processes
Vincent Dutordoir
Hugh Salimbeni
Eric Hambro
John Mcleod
Felix Leibfried
A. Artemev
Mark van der Wilk
J. Hensman
M. Deisenroth
S. T. John
GP
89
23
0
12 Apr 2021
Residual Gaussian Process: A Tractable Nonparametric Bayesian Emulator
  for Multi-fidelity Simulations
Residual Gaussian Process: A Tractable Nonparametric Bayesian Emulator for Multi-fidelity Simulations
Wei W. Xing
A. Shah
Peng Wang
Shandian Zhe
Robert M. Kirby
61
13
0
08 Apr 2021
Uncertainty-aware Remaining Useful Life predictor
Uncertainty-aware Remaining Useful Life predictor
Luca Biggio
Alexander Wieland
M. A. Chao
I. Kastanis
Olga Fink
AI4CE
32
7
0
08 Apr 2021
Accurate and Reliable Forecasting using Stochastic Differential
  Equations
Accurate and Reliable Forecasting using Stochastic Differential Equations
Peng Cui
Zhijie Deng
Wenbo Hu
Jun Zhu
UQCV
75
1
0
28 Mar 2021
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCVBDL
82
109
0
24 Feb 2021
Using Gaussian Processes to Design Dynamic Experiments for Black-Box
  Model Discrimination under Uncertainty
Using Gaussian Processes to Design Dynamic Experiments for Black-Box Model Discrimination under Uncertainty
Simon Olofsson
Eduardo S. Schultz
A. Mhamdi
Alexander Mitsos
M. Deisenroth
Ruth Misener
17
0
0
07 Feb 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
162
52
0
27 Dec 2020
Active Learning for Deep Gaussian Process Surrogates
Active Learning for Deep Gaussian Process Surrogates
Annie Sauer
R. Gramacy
D. Higdon
GPAI4CE
88
93
0
15 Dec 2020
Deep Gaussian Processes for geophysical parameter retrieval
Deep Gaussian Processes for geophysical parameter retrieval
D. Svendsen
Pablo Morales-Álvarez
Rafael Molina
Gustau Camps-Valls
GP
45
4
0
07 Dec 2020
Exploration in Online Advertising Systems with Deep Uncertainty-Aware
  Learning
Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning
Chao Du
Zhifeng Gao
Shuo Yuan
Lining Gao
Z. Li
Yifan Zeng
Xiaoqiang Zhu
Jian Xu
Kun Gai
Kuang-chih Lee
96
18
0
25 Nov 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDLUQCV
369
1,947
0
12 Nov 2020
A Variational Infinite Mixture for Probabilistic Inverse Dynamics
  Learning
A Variational Infinite Mixture for Probabilistic Inverse Dynamics Learning
Hany Abdulsamad
Peter Nickl
Pascal Klink
Jan Peters
23
3
0
10 Nov 2020
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
109
61
0
08 Nov 2020
Transforming Gaussian Processes With Normalizing Flows
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
105
34
0
03 Nov 2020
Sample-efficient reinforcement learning using deep Gaussian processes
Sample-efficient reinforcement learning using deep Gaussian processes
Charles W. L. Gadd
Markus Heinonen
Harri Lähdesmäki
Samuel Kaski
GPBDL
64
4
0
02 Nov 2020
On Signal-to-Noise Ratio Issues in Variational Inference for Deep
  Gaussian Processes
On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes
Tim G. J. Rudner
Oscar Key
Y. Gal
Tom Rainforth
18
3
0
01 Nov 2020
Inter-domain Deep Gaussian Processes
Inter-domain Deep Gaussian Processes
Tim G. J. Rudner
Dino Sejdinovic
Yarin Gal
79
11
0
01 Nov 2020
Hierarchical Gaussian Processes with Wasserstein-2 Kernels
Hierarchical Gaussian Processes with Wasserstein-2 Kernels
S. Popescu
D. Sharp
James H. Cole
Ben Glocker
74
5
0
28 Oct 2020
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
  Data
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data
Chacha Chen
Junjie Liang
Fenglong Ma
Lucas Glass
Jimeng Sun
Cao Xiao
71
26
0
22 Oct 2020
Probabilistic selection of inducing points in sparse Gaussian processes
Probabilistic selection of inducing points in sparse Gaussian processes
Anders Kirk Uhrenholt
V. Charvet
B. S. Jensen
48
13
0
19 Oct 2020
Characterizing Deep Gaussian Processes via Nonlinear Recurrence Systems
Characterizing Deep Gaussian Processes via Nonlinear Recurrence Systems
Anh Tong
Jaesik Choi
60
2
0
19 Oct 2020
Sparse Spectrum Warped Input Measures for Nonstationary Kernel Learning
Sparse Spectrum Warped Input Measures for Nonstationary Kernel Learning
A. Tompkins
Rafael Oliveira
F. Ramos
63
6
0
09 Oct 2020
Using Bayesian deep learning approaches for uncertainty-aware building
  energy surrogate models
Using Bayesian deep learning approaches for uncertainty-aware building energy surrogate models
Paul Westermann
R. Evins
AI4CE
44
44
0
05 Oct 2020
Deep kernel processes
Deep kernel processes
Laurence Aitchison
Adam X. Yang
Sebastian W. Ober
BDL
96
42
0
04 Oct 2020
Stein Variational Gaussian Processes
Stein Variational Gaussian Processes
Thomas Pinder
Christopher Nemeth
David Leslie
BDL
46
7
0
25 Sep 2020
Doubly Stochastic Variational Inference for Neural Processes with
  Hierarchical Latent Variables
Doubly Stochastic Variational Inference for Neural Processes with Hierarchical Latent Variables
Q. Wang
H. V. Hoof
BDL
66
42
0
21 Aug 2020
Stochastic Bayesian Neural Networks
Abhinav Sagar
BDLUQCV
48
0
0
12 Aug 2020
Deep State-Space Gaussian Processes
Deep State-Space Gaussian Processes
Zheng Zhao
M. Emzir
Simo Särkkä
GP
88
19
0
11 Aug 2020
Multi-speaker Text-to-speech Synthesis Using Deep Gaussian Processes
Multi-speaker Text-to-speech Synthesis Using Deep Gaussian Processes
Kentaro Mitsui
Tomoki Koriyama
Hiroshi Saruwatari
48
5
0
07 Aug 2020
State Space Expectation Propagation: Efficient Inference Schemes for
  Temporal Gaussian Processes
State Space Expectation Propagation: Efficient Inference Schemes for Temporal Gaussian Processes
William J. Wilkinson
Paul E. Chang
Michael Riis Andersen
Arno Solin
58
13
0
12 Jul 2020
Overview of Gaussian process based multi-fidelity techniques with
  variable relationship between fidelities
Overview of Gaussian process based multi-fidelity techniques with variable relationship between fidelities
Loïc Brevault
M. Balesdent
Ali Hebbal
90
72
0
30 Jun 2020
Previous
12345
Next