Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.08933
Cited By
Doubly Stochastic Variational Inference for Deep Gaussian Processes
24 May 2017
Hugh Salimbeni
M. Deisenroth
BDL
GP
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Doubly Stochastic Variational Inference for Deep Gaussian Processes"
50 / 230 papers shown
Title
Deep Gaussian Processes: A Survey
Kalvik Jakkala
AI4CE
GP
BDL
26
19
0
21 Jun 2021
SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice for Scalable Gaussian Processes
Sanyam Kapoor
Marc Finzi
Ke Alexander Wang
A. Wilson
33
11
0
12 Jun 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
28
24
0
11 Jun 2021
Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition
Shengyang Sun
Jiaxin Shi
A. Wilson
Roger C. Grosse
BDL
9
6
0
10 Jun 2021
Compositional Modeling of Nonlinear Dynamical Systems with ODE-based Random Features
Thomas M. McDonald
Mauricio A. Alvarez
11
10
0
10 Jun 2021
How to Evaluate Uncertainty Estimates in Machine Learning for Regression?
Laurens Sluijterman
Eric Cator
Tom Heskes
UQCV
33
21
0
07 Jun 2021
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning
Jannik Kossen
Neil Band
Clare Lyle
Aidan Gomez
Tom Rainforth
Y. Gal
OOD
3DPC
33
137
0
04 Jun 2021
Inferring Black Hole Properties from Astronomical Multivariate Time Series with Bayesian Attentive Neural Processes
Ji Won Park
A. Villar
Yin Li
Yan-Fei Jiang
S. Ho
J. Lin
P. Marshall
A. Roodman
BDL
12
5
0
02 Jun 2021
Stochastic Collapsed Variational Inference for Structured Gaussian Process Regression Network
Rui Meng
Herbert Lee
K. Bouchard
11
2
0
01 Jun 2021
Sparse Uncertainty Representation in Deep Learning with Inducing Weights
H. Ritter
Martin Kukla
Chen Zhang
Yingzhen Li
UQCV
BDL
55
17
0
30 May 2021
Hierarchical Non-Stationary Temporal Gaussian Processes With
L
1
L^1
L
1
-Regularization
Zheng Zhao
Rui Gao
Simo Särkkä
15
0
0
20 May 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Vincent Dutordoir
J. Hensman
Mark van der Wilk
Carl Henrik Ek
Zoubin Ghahramani
N. Durrande
BDL
UQCV
10
30
0
10 May 2021
Exploring Uncertainty in Deep Learning for Construction of Prediction Intervals
Yuandu Lai
Yucheng Shi
Yahong Han
Yunfeng Shao
Meiyu Qi
Bingshuai Li
UQCV
35
15
0
27 Apr 2021
Convolutional Normalizing Flows for Deep Gaussian Processes
Haibin Yu
Dapeng Liu
Yizhou Chen
K. H. Low
Patrick Jaillet
BDL
25
6
0
17 Apr 2021
Deep Gaussian Processes for Biogeophysical Parameter Retrieval and Model Inversion
D. Svendsen
Pablo Morales-Álvarez
A. Ruescas
Rafael Molina
Gustau Camps-Valls
30
29
0
16 Apr 2021
GPflux: A Library for Deep Gaussian Processes
Vincent Dutordoir
Hugh Salimbeni
Eric Hambro
John Mcleod
Felix Leibfried
A. Artemev
Mark van der Wilk
J. Hensman
M. Deisenroth
S. T. John
GP
33
23
0
12 Apr 2021
Residual Gaussian Process: A Tractable Nonparametric Bayesian Emulator for Multi-fidelity Simulations
Wei W. Xing
A. Shah
Peng Wang
Shandian Zhe
Robert M. Kirby
14
12
0
08 Apr 2021
Uncertainty-aware Remaining Useful Life predictor
Luca Biggio
Alexander Wieland
M. A. Chao
I. Kastanis
Olga Fink
AI4CE
17
7
0
08 Apr 2021
Accurate and Reliable Forecasting using Stochastic Differential Equations
Peng Cui
Zhijie Deng
Wenbo Hu
Jun Zhu
UQCV
38
1
0
28 Mar 2021
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
21
107
0
24 Feb 2021
Using Gaussian Processes to Design Dynamic Experiments for Black-Box Model Discrimination under Uncertainty
Simon Olofsson
Eduardo S. Schultz
A. Mhamdi
Alexander Mitsos
M. Deisenroth
Ruth Misener
10
0
0
07 Feb 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
42
49
0
27 Dec 2020
Active Learning for Deep Gaussian Process Surrogates
Annie Sauer
R. Gramacy
D. Higdon
GP
AI4CE
17
85
0
15 Dec 2020
Deep Gaussian Processes for geophysical parameter retrieval
D. Svendsen
Pablo Morales-Álvarez
Rafael Molina
Gustau Camps-Valls
GP
12
4
0
07 Dec 2020
Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning
Chao Du
Zhifeng Gao
Shuo Yuan
Lining Gao
Z. Li
Yifan Zeng
Xiaoqiang Zhu
Jian Xu
Kun Gai
Kuang-chih Lee
25
18
0
25 Nov 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
51
1,879
0
12 Nov 2020
A Variational Infinite Mixture for Probabilistic Inverse Dynamics Learning
Hany Abdulsamad
Peter Nickl
Pascal Klink
Jan Peters
8
3
0
10 Nov 2020
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
57
0
08 Nov 2020
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
23
34
0
03 Nov 2020
Sample-efficient reinforcement learning using deep Gaussian processes
Charles W. L. Gadd
Markus Heinonen
Harri Lähdesmäki
Samuel Kaski
GP
BDL
23
4
0
02 Nov 2020
On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes
Tim G. J. Rudner
Oscar Key
Y. Gal
Tom Rainforth
10
3
0
01 Nov 2020
Inter-domain Deep Gaussian Processes
Tim G. J. Rudner
Dino Sejdinovic
Yarin Gal
6
11
0
01 Nov 2020
Hierarchical Gaussian Processes with Wasserstein-2 Kernels
S. Popescu
D. Sharp
James H. Cole
Ben Glocker
25
5
0
28 Oct 2020
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data
Chacha Chen
Junjie Liang
Fenglong Ma
Lucas Glass
Jimeng Sun
Cao Xiao
19
26
0
22 Oct 2020
Probabilistic selection of inducing points in sparse Gaussian processes
Anders Kirk Uhrenholt
V. Charvet
B. S. Jensen
9
12
0
19 Oct 2020
Characterizing Deep Gaussian Processes via Nonlinear Recurrence Systems
Anh Tong
Jaesik Choi
29
2
0
19 Oct 2020
Sparse Spectrum Warped Input Measures for Nonstationary Kernel Learning
A. Tompkins
Rafael Oliveira
F. Ramos
8
6
0
09 Oct 2020
Using Bayesian deep learning approaches for uncertainty-aware building energy surrogate models
Paul Westermann
R. Evins
AI4CE
11
42
0
05 Oct 2020
Deep kernel processes
Laurence Aitchison
Adam X. Yang
Sebastian W. Ober
BDL
16
41
0
04 Oct 2020
Stein Variational Gaussian Processes
Thomas Pinder
Christopher Nemeth
David Leslie
BDL
22
7
0
25 Sep 2020
Doubly Stochastic Variational Inference for Neural Processes with Hierarchical Latent Variables
Q. Wang
H. V. Hoof
BDL
21
42
0
21 Aug 2020
Stochastic Bayesian Neural Networks
Abhinav Sagar
BDL
UQCV
12
0
0
12 Aug 2020
Deep State-Space Gaussian Processes
Zheng Zhao
M. Emzir
Simo Särkkä
GP
43
19
0
11 Aug 2020
Multi-speaker Text-to-speech Synthesis Using Deep Gaussian Processes
Kentaro Mitsui
Tomoki Koriyama
Hiroshi Saruwatari
20
5
0
07 Aug 2020
State Space Expectation Propagation: Efficient Inference Schemes for Temporal Gaussian Processes
William J. Wilkinson
Paul E. Chang
Michael Riis Andersen
Arno Solin
8
13
0
12 Jul 2020
Overview of Gaussian process based multi-fidelity techniques with variable relationship between fidelities
Loïc Brevault
M. Balesdent
Ali Hebbal
16
69
0
30 Jun 2020
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir
N. Durrande
J. Hensman
24
54
0
30 Jun 2020
Multi-fidelity modeling with different input domain definitions using Deep Gaussian Processes
Ali Hebbal
Loïc Brevault
M. Balesdent
El-Ghazali Talbi
N. Melab
AI4CE
6
36
0
29 Jun 2020
Variational Autoencoding of PDE Inverse Problems
Daniel J. Tait
Theodoros Damoulas
AI4CE
9
12
0
28 Jun 2020
Previous
1
2
3
4
5
Next