ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.02140
14
0

Whiplash Gradient Descent Dynamics

4 March 2022
Subhransu S. Bhattacharjee
I. Petersen
ArXivPDFHTML
Abstract

In this paper, we propose the Whiplash Inertial Gradient dynamics, a closed-loop optimization method that utilises gradient information, to find the minima of a cost function in finite-dimensional settings. We introduce the symplectic asymptotic convergence analysis for the Whiplash system for convex functions. We also introduce relaxation sequences to explain the non-classical nature of the algorithm and an exploring heuristic variant of the Whiplash algorithm to escape saddle points, deterministically. We study the algorithm's performance for various costs and provide a practical methodology for analyzing convergence rates using integral constraint bounds and a novel Lyapunov rate method. Our results demonstrate polynomial and exponential rates of convergence for quadratic cost functions.

View on arXiv
Comments on this paper