ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.01474
  4. Cited By
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
v1v2v3 (latest)

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

5 December 2016
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles"

50 / 3,224 papers shown
Title
Active Instruction Tuning: Improving Cross-Task Generalization by
  Training on Prompt Sensitive Tasks
Active Instruction Tuning: Improving Cross-Task Generalization by Training on Prompt Sensitive Tasks
Po-Nien Kung
Fan Yin
Di Wu
Kai-Wei Chang
Nanyun Peng
151
43
0
01 Nov 2023
OpenForest: A data catalogue for machine learning in forest monitoring
OpenForest: A data catalogue for machine learning in forest monitoring
Arthur Ouaknine
T. Kattenborn
Etienne Laliberté
David Rolnick
176
6
0
01 Nov 2023
Ensemble models outperform single model uncertainties and predictions
  for operator-learning of hypersonic flows
Ensemble models outperform single model uncertainties and predictions for operator-learning of hypersonic flows
Victor J. Leon
Noah Ford
Honest Mrema
Jeffrey Gilbert
Alexander New
UQCVAI4CE
43
0
0
31 Oct 2023
Distil the informative essence of loop detector data set: Is
  network-level traffic forecasting hungry for more data?
Distil the informative essence of loop detector data set: Is network-level traffic forecasting hungry for more data?
Guopeng Li
V. Knoop
J. W. C.
J. V. Lint
67
1
0
31 Oct 2023
Can input reconstruction be used to directly estimate uncertainty of a
  regression U-Net model? -- Application to proton therapy dose prediction for
  head and neck cancer patients
Can input reconstruction be used to directly estimate uncertainty of a regression U-Net model? -- Application to proton therapy dose prediction for head and neck cancer patients
Margerie Huet-Dastarac
Dan Nguyen
Steve B. Jiang
John A. Lee
A. M. Barragán-Montero
OODUQCV
42
0
0
30 Oct 2023
Variational Curriculum Reinforcement Learning for Unsupervised Discovery
  of Skills
Variational Curriculum Reinforcement Learning for Unsupervised Discovery of Skills
Seongun Kim
Kyowoon Lee
Jaesik Choi
SSLDRL
89
10
0
30 Oct 2023
Diversify & Conquer: Outcome-directed Curriculum RL via
  Out-of-Distribution Disagreement
Diversify & Conquer: Outcome-directed Curriculum RL via Out-of-Distribution Disagreement
Daesol Cho
Seungjae Lee
H. J. Kim
OODD
99
2
0
30 Oct 2023
Out-of-distribution Object Detection through Bayesian Uncertainty
  Estimation
Out-of-distribution Object Detection through Bayesian Uncertainty Estimation
Tianhao Zhang
Shenglin Wang
N. Bouaynaya
R. Calinescu
Lyudmila Mihaylova
OODD
69
2
0
29 Oct 2023
Efficient IoT Inference via Context-Awareness
Efficient IoT Inference via Context-Awareness
Mohammad Mehdi Rastikerdar
Jin Huang
Shiwei Fang
Hui Guan
Deepak Ganesan
103
0
0
29 Oct 2023
TIC-TAC: A Framework for Improved Covariance Estimation in Deep
  Heteroscedastic Regression
TIC-TAC: A Framework for Improved Covariance Estimation in Deep Heteroscedastic Regression
Megh Shukla
Mathieu Salzmann
Alexandre Alahi
78
3
0
29 Oct 2023
Switching Temporary Teachers for Semi-Supervised Semantic Segmentation
Switching Temporary Teachers for Semi-Supervised Semantic Segmentation
Jaemin Na
Jung-Woo Ha
HyungJin Chang
Dongyoon Han
Wonjun Hwang
93
33
0
28 Oct 2023
Knowing What LLMs DO NOT Know: A Simple Yet Effective Self-Detection
  Method
Knowing What LLMs DO NOT Know: A Simple Yet Effective Self-Detection Method
Yukun Zhao
Lingyong Yan
Weiwei Sun
Guoliang Xing
Chong Meng
Shuaiqiang Wang
Zhicong Cheng
Zhaochun Ren
D. Yin
89
42
0
27 Oct 2023
Fantastic Gains and Where to Find Them: On the Existence and Prospect of
  General Knowledge Transfer between Any Pretrained Model
Fantastic Gains and Where to Find Them: On the Existence and Prospect of General Knowledge Transfer between Any Pretrained Model
Karsten Roth
Lukas Thede
Almut Sophia Koepke
Oriol Vinyals
Olivier J. Hénaff
Zeynep Akata
AAML
122
13
0
26 Oct 2023
Agreeing to Stop: Reliable Latency-Adaptive Decision Making via
  Ensembles of Spiking Neural Networks
Agreeing to Stop: Reliable Latency-Adaptive Decision Making via Ensembles of Spiking Neural Networks
Jiechen Chen
Sangwoo Park
Osvaldo Simeone
89
4
0
25 Oct 2023
Adaptive Uncertainty Estimation via High-Dimensional Testing on Latent
  Representations
Adaptive Uncertainty Estimation via High-Dimensional Testing on Latent Representations
Tsai Hor Chan
Kin Wai Lau
Jiajun Shen
Guosheng Yin
Lequan Yu
UQCVOOD
68
2
0
25 Oct 2023
Can You Rely on Your Model Evaluation? Improving Model Evaluation with
  Synthetic Test Data
Can You Rely on Your Model Evaluation? Improving Model Evaluation with Synthetic Test Data
B. V. Breugel
Nabeel Seedat
F. Imrie
M. Schaar
SyDa
56
25
0
25 Oct 2023
Anatomically-aware Uncertainty for Semi-supervised Image Segmentation
Anatomically-aware Uncertainty for Semi-supervised Image Segmentation
V. SukeshAdiga
Jose Dolz
H. Lombaert
UQCV
82
27
0
24 Oct 2023
Learned, uncertainty-driven adaptive acquisition for photon-efficient scanning microscopy
Learned, uncertainty-driven adaptive acquisition for photon-efficient scanning microscopy
C. T. Ye
Jiashu Han
Kunzan Liu
Anastasios Nikolas Angelopoulos
Linda G. Griffith
Kristina Monakhova
Sixian You
81
4
0
24 Oct 2023
Revisiting Deep Ensemble for Out-of-Distribution Detection: A Loss
  Landscape Perspective
Revisiting Deep Ensemble for Out-of-Distribution Detection: A Loss Landscape Perspective
Kun Fang
Qinghua Tao
Xiaolin Huang
Jie Yang
OODD
112
3
0
22 Oct 2023
Be Bayesian by Attachments to Catch More Uncertainty
Be Bayesian by Attachments to Catch More Uncertainty
Shiyu Shen
Bin Pan
Tianyang Shi
Tao Li
Zhenwei Shi
UQCV
98
0
0
19 Oct 2023
Getting aligned on representational alignment
Getting aligned on representational alignment
Ilia Sucholutsky
Lukas Muttenthaler
Adrian Weller
Andi Peng
Andreea Bobu
...
Thomas Unterthiner
Andrew Kyle Lampinen
Klaus-Robert Muller
M. Toneva
Thomas Griffiths
158
93
0
18 Oct 2023
Panoptic Out-of-Distribution Segmentation
Panoptic Out-of-Distribution Segmentation
Rohit Mohan
Kiran Kumaraswamy
Juana Valeria Hurtado
Kürsat Petek
Abhinav Valada
71
9
0
18 Oct 2023
Sensitivity-Aware Amortized Bayesian Inference
Sensitivity-Aware Amortized Bayesian Inference
Lasse Elsemüller
Hans Olischläger
Marvin Schmitt
Paul-Christian Bürkner
Ullrich Kothe
Stefan T. Radev
126
9
0
17 Oct 2023
United We Stand: Using Epoch-wise Agreement of Ensembles to Combat
  Overfit
United We Stand: Using Epoch-wise Agreement of Ensembles to Combat Overfit
Uri Stern
Daniel Shwartz
D. Weinshall
82
1
0
17 Oct 2023
Provable Probabilistic Imaging using Score-Based Generative Priors
Provable Probabilistic Imaging using Score-Based Generative Priors
Yu Sun
Zihui Wu
Yifan Chen
Berthy Feng
Katherine Bouman
DiffM
108
35
0
16 Oct 2023
Correcting model misspecification in physics-informed neural networks
  (PINNs)
Correcting model misspecification in physics-informed neural networks (PINNs)
Zongren Zou
Xuhui Meng
George Karniadakis
PINN
76
43
0
16 Oct 2023
IW-GAE: Importance Weighted Group Accuracy Estimation for Improved
  Calibration and Model Selection in Unsupervised Domain Adaptation
IW-GAE: Importance Weighted Group Accuracy Estimation for Improved Calibration and Model Selection in Unsupervised Domain Adaptation
Taejong Joo
Diego Klabjan
125
1
0
16 Oct 2023
On permutation symmetries in Bayesian neural network posteriors: a
  variational perspective
On permutation symmetries in Bayesian neural network posteriors: a variational perspective
Simone Rossi
Ankit Singh
T. Hannagan
71
3
0
16 Oct 2023
Private Synthetic Data Meets Ensemble Learning
Private Synthetic Data Meets Ensemble Learning
Haoyuan Sun
Navid Azizan
Akash Srivastava
Hao Wang
SyDa
41
1
0
15 Oct 2023
Machine Learning for Urban Air Quality Analytics: A Survey
Machine Learning for Urban Air Quality Analytics: A Survey
Jindong Han
Weijiao Zhang
Hao Liu
Hui Xiong
AI4CE
114
12
0
14 Oct 2023
Uncertainty Quantification using Generative Approach
Uncertainty Quantification using Generative Approach
Yunsheng Zhang
UQCVBDL
33
0
0
13 Oct 2023
A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors
A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors
Olivier Laurent
Emanuel Aldea
Gianni Franchi
BDLUQCV
81
8
0
12 Oct 2023
Generalized Logit Adjustment: Calibrating Fine-tuned Models by Removing
  Label Bias in Foundation Models
Generalized Logit Adjustment: Calibrating Fine-tuned Models by Removing Label Bias in Foundation Models
Beier Zhu
Kaihua Tang
Qianru Sun
Hanwang Zhang
78
22
0
12 Oct 2023
BaSAL: Size-Balanced Warm Start Active Learning for LiDAR Semantic
  Segmentation
BaSAL: Size-Balanced Warm Start Active Learning for LiDAR Semantic Segmentation
Jiarong Wei
Yancong Lin
Holger Caesar
72
4
0
12 Oct 2023
PG-NeuS: Robust and Efficient Point Guidance for Multi-View Neural
  Surface Reconstruction
PG-NeuS: Robust and Efficient Point Guidance for Multi-View Neural Surface Reconstruction
Chen Zhang
Wanjuan Su
Qingshan Xu
Wenbing Tao
3DPC3DV
77
0
0
12 Oct 2023
Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
  Localization
Leveraging Neural Radiance Fields for Uncertainty-Aware Visual Localization
Le Chen
Weirong Chen
Rui Wang
Marc Pollefeys
UQCV
84
10
0
10 Oct 2023
PICProp: Physics-Informed Confidence Propagation for Uncertainty
  Quantification
PICProp: Physics-Informed Confidence Propagation for Uncertainty Quantification
Qianli Shen
Wai Hoh Tang
Zhun Deng
Apostolos F. Psaros
Kenji Kawaguchi
211
1
0
10 Oct 2023
Implicit Variational Inference for High-Dimensional Posteriors
Implicit Variational Inference for High-Dimensional Posteriors
Anshuk Uppal
Kristoffer Stensbo-Smidt
Wouter Boomsma
J. Frellsen
BDL
60
1
0
10 Oct 2023
Quantifying Uncertainty in Deep Learning Classification with Noise in
  Discrete Inputs for Risk-Based Decision Making
Quantifying Uncertainty in Deep Learning Classification with Noise in Discrete Inputs for Risk-Based Decision Making
Maryam Kheirandish
Shengfan Zhang
D. Catanzaro
V. Crudu
UQCV
41
0
0
09 Oct 2023
Conformal Decision Theory: Safe Autonomous Decisions from Imperfect
  Predictions
Conformal Decision Theory: Safe Autonomous Decisions from Imperfect Predictions
Jordan Lekeufack
Anastasios Nikolas Angelopoulos
Andrea V. Bajcsy
Michael I. Jordan
Jitendra Malik
OffRL
220
32
0
09 Oct 2023
A Bias-Variance-Covariance Decomposition of Kernel Scores for Generative
  Models
A Bias-Variance-Covariance Decomposition of Kernel Scores for Generative Models
Sebastian G. Gruber
Florian Buettner
UQCVUD
76
1
0
09 Oct 2023
A review of uncertainty quantification in medical image analysis:
  probabilistic and non-probabilistic methods
A review of uncertainty quantification in medical image analysis: probabilistic and non-probabilistic methods
Ling Huang
S. Ruan
Yucheng Xing
Mengling Feng
99
27
0
09 Oct 2023
XAL: EXplainable Active Learning Makes Classifiers Better Low-resource
  Learners
XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners
Yun Luo
Zhen Yang
Fandong Meng
Yingjie Li
Fang Guo
Qinglin Qi
Jie Zhou
Yue Zhang
101
2
0
09 Oct 2023
Uncertainty quantification for deep learning-based schemes for solving
  high-dimensional backward stochastic differential equations
Uncertainty quantification for deep learning-based schemes for solving high-dimensional backward stochastic differential equations
Lorenc Kapllani
Long Teng
Matthias Rottmann
42
1
0
05 Oct 2023
ACT-Net: Anchor-context Action Detection in Surgery Videos
ACT-Net: Anchor-context Action Detection in Surgery Videos
Luoying Hao
Yan Hu
Wenjun Lin
Qun Wang
Heng Li
Huazhu Fu
Jinming Duan
Jiang-Dong Liu
MedIm
93
3
0
05 Oct 2023
Assessment of Prediction Intervals Using Uncertainty Characteristics
  Curves
Assessment of Prediction Intervals Using Uncertainty Characteristics Curves
Jirí Navrátil
Benjamin Elder
Matthew Arnold
Soumya Ghosh
P. Sattigeri
47
0
0
04 Oct 2023
A Metacognitive Approach to Out-of-Distribution Detection for
  Segmentation
A Metacognitive Approach to Out-of-Distribution Detection for Segmentation
Meghna Gummadi
Cassandra Kent
Karl Schmeckpeper
Eric Eaton
UQCV
65
1
0
04 Oct 2023
Something for (almost) nothing: Improving deep ensemble calibration
  using unlabeled data
Something for (almost) nothing: Improving deep ensemble calibration using unlabeled data
Konstantinos Pitas
Julyan Arbel
BDLUQCVFedML
63
0
0
04 Oct 2023
Out-of-Distribution Detection by Leveraging Between-Layer Transformation
  Smoothness
Out-of-Distribution Detection by Leveraging Between-Layer Transformation Smoothness
Fran Jelenić
Josip Jukić
Martin Tutek
Mate Puljiz
Jan vSnajder
OODD
86
7
0
04 Oct 2023
Reward Model Ensembles Help Mitigate Overoptimization
Reward Model Ensembles Help Mitigate Overoptimization
Thomas Coste
Usman Anwar
Robert Kirk
David M. Krueger
NoLaALM
118
139
0
04 Oct 2023
Previous
123...181920...636465
Next