ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.01474
  4. Cited By
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
v1v2v3 (latest)

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

5 December 2016
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles"

50 / 3,224 papers shown
Title
Benchmarking Large Language Model Volatility
Benchmarking Large Language Model Volatility
Boyang Yu
33
4
0
26 Nov 2023
High-resolution Population Maps Derived from Sentinel-1 and Sentinel-2
High-resolution Population Maps Derived from Sentinel-1 and Sentinel-2
Nando Metzger
Rodrigo Caye Daudt
D. Tuia
Konrad Schindler
122
7
0
23 Nov 2023
Class Uncertainty: A Measure to Mitigate Class Imbalance
Class Uncertainty: A Measure to Mitigate Class Imbalance
Z. S. Baltaci
K. Oksuz
S. Kuzucu
K. Tezoren
B. K. Konar
A. Ozkan
Emre Akbas
Sinan Kalkan
197
2
0
23 Nov 2023
LM-Cocktail: Resilient Tuning of Language Models via Model Merging
LM-Cocktail: Resilient Tuning of Language Models via Model Merging
Shitao Xiao
Zheng Liu
Peitian Zhang
Xingrun Xing
MoMeKELM
158
28
0
22 Nov 2023
An Empirical Study of Uncertainty Estimation Techniques for Detecting
  Drift in Data Streams
An Empirical Study of Uncertainty Estimation Techniques for Detecting Drift in Data Streams
Anton Winter
Nicolas Jourdan
Tristan Wirth
Volker Knauthe
Arjan Kuijper
43
1
0
22 Nov 2023
Applications of Spiking Neural Networks in Visual Place Recognition
Applications of Spiking Neural Networks in Visual Place Recognition
S. Hussaini
Michael Milford
Tobias Fischer
145
7
0
22 Nov 2023
Favour: FAst Variance Operator for Uncertainty Rating
Favour: FAst Variance Operator for Uncertainty Rating
Thomas Dybdahl Ahle
Sahar Karimi
Peter Tak Peter Tang
BDL
57
0
0
21 Nov 2023
On the Out-of-Distribution Coverage of Combining Split Conformal
  Prediction and Bayesian Deep Learning
On the Out-of-Distribution Coverage of Combining Split Conformal Prediction and Bayesian Deep Learning
Paul Scemama
Ariel Kapusta
89
0
0
21 Nov 2023
Hierarchical Meta-learning-based Adaptive Controller
Hierarchical Meta-learning-based Adaptive Controller
Fengze Xie
Guanya Shi
Michael O'Connell
Yisong Yue
Soon-Jo Chung
71
4
0
21 Nov 2023
Uncertainty Estimation in Contrast-Enhanced MR Image Translation with
  Multi-Axis Fusion
Uncertainty Estimation in Contrast-Enhanced MR Image Translation with Multi-Axis Fusion
Ivo M. Baltruschat
Parvaneh Janbakhshi
Melanie Dohmen
Matthias Lenga
MedIm
86
2
0
20 Nov 2023
Leveraging Uncertainty Estimates To Improve Classifier Performance
Leveraging Uncertainty Estimates To Improve Classifier Performance
Gundeep Arora
S. Merugu
Anoop Saladi
R. Rastogi
71
1
0
20 Nov 2023
Evidential Uncertainty Quantification: A Variance-Based Perspective
Evidential Uncertainty Quantification: A Variance-Based Perspective
Ruxiao Duan
B. Caffo
Harrison X. Bai
Haris I. Sair
Craig K. Jones
UDEDLUQCVBDLPER
95
14
0
19 Nov 2023
Estimating Uncertainty in Landslide Segmentation Models
Estimating Uncertainty in Landslide Segmentation Models
S. Nagendra
Chaopeng Shen
Daniel Kifer
UQCV
50
4
0
18 Nov 2023
An Empirical Bayes Framework for Open-Domain Dialogue Generation
An Empirical Bayes Framework for Open-Domain Dialogue Generation
Jing Yang Lee
Kong Aik Lee
Woon-Seng Gan
BDL
62
1
0
18 Nov 2023
On the Quantification of Image Reconstruction Uncertainty without
  Training Data
On the Quantification of Image Reconstruction Uncertainty without Training Data
Sirui Bi
Victor Fung
Jiaxin Zhang
63
1
0
16 Nov 2023
GAIA: Delving into Gradient-based Attribution Abnormality for
  Out-of-distribution Detection
GAIA: Delving into Gradient-based Attribution Abnormality for Out-of-distribution Detection
Jinggang Chen
Junjie Li
Xiaoyang Qu
Jianzong Wang
Jiguang Wan
Jing Xiao
OODD
67
10
0
16 Nov 2023
Neural machine translation for automated feedback on children's
  early-stage writing
Neural machine translation for automated feedback on children's early-stage writing
Jonas Vestergaard Jensen
Mikkel Jordahn
Michael Riis Andersen
79
0
0
15 Nov 2023
Empirical evaluation of Uncertainty Quantification in
  Retrieval-Augmented Language Models for Science
Empirical evaluation of Uncertainty Quantification in Retrieval-Augmented Language Models for Science
S. Wagle
Sai Munikoti
Anurag Acharya
Sara Smith
Sameera Horawalavithana
28
5
0
15 Nov 2023
Leveraging Citizen Science for Flood Extent Detection using Machine
  Learning Benchmark Dataset
Leveraging Citizen Science for Flood Extent Detection using Machine Learning Benchmark Dataset
Muthukumaran Ramasubramanian
I. Gurung
Shubhankar Gahlot
Ronny Hansch
Andrew L. Molthan
M. Maskey
29
0
0
15 Nov 2023
Model Agnostic Explainable Selective Regression via Uncertainty
  Estimation
Model Agnostic Explainable Selective Regression via Uncertainty Estimation
Andrea Pugnana
Carlos Mougan
Dan Saattrup Nielsen
90
0
0
15 Nov 2023
Structural-Based Uncertainty in Deep Learning Across Anatomical Scales:
  Analysis in White Matter Lesion Segmentation
Structural-Based Uncertainty in Deep Learning Across Anatomical Scales: Analysis in White Matter Lesion Segmentation
Nataliia Molchanova
Vatsal Raina
A. Malinin
Francesco La Rosa
Adrien Depeursinge
Mark Gales
Cristina Granziera
Henning Muller
Mara Graziani
Meritxell Bach Cuadra
65
4
0
15 Nov 2023
Decomposing Uncertainty for Large Language Models through Input
  Clarification Ensembling
Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling
Bairu Hou
Yujian Liu
Kaizhi Qian
Jacob Andreas
Shiyu Chang
Yang Zhang
UDUQCVPER
110
65
0
15 Nov 2023
Predicting generalization performance with correctness discriminators
Predicting generalization performance with correctness discriminators
Yuekun Yao
Alexander Koller
115
1
0
15 Nov 2023
Uncertainty Quantification in Machine Learning for Biosignal Applications -- A Review
Uncertainty Quantification in Machine Learning for Biosignal Applications -- A Review
Ivo Pascal de Jong
A. Sburlea
Matias Valdenegro-Toro
97
2
0
15 Nov 2023
Introducing an Improved Information-Theoretic Measure of Predictive
  Uncertainty
Introducing an Improved Information-Theoretic Measure of Predictive Uncertainty
Kajetan Schweighofer
L. Aichberger
Mykyta Ielanskyi
Sepp Hochreiter
85
12
0
14 Nov 2023
A Survey of Confidence Estimation and Calibration in Large Language
  Models
A Survey of Confidence Estimation and Calibration in Large Language Models
Jiahui Geng
Fengyu Cai
Yuxia Wang
Heinz Koeppl
Preslav Nakov
Iryna Gurevych
UQCV
150
83
0
14 Nov 2023
Probabilistic Physics-integrated Neural Differentiable Modeling for
  Isothermal Chemical Vapor Infiltration Process
Probabilistic Physics-integrated Neural Differentiable Modeling for Isothermal Chemical Vapor Infiltration Process
Deepak Akhare
Zeping Chen
R. Gulotty
Tengfei Luo
Jian-Xun Wang
AI4CE
68
6
0
13 Nov 2023
Anchor Data Augmentation
Anchor Data Augmentation
Nora Schneider
Shirin Goshtasbpour
Fernando Pérez-Cruz
107
6
0
12 Nov 2023
Topology-Matching Normalizing Flows for Out-of-Distribution Detection in
  Robot Learning
Topology-Matching Normalizing Flows for Out-of-Distribution Detection in Robot Learning
Jianxiang Feng
Jongseok Lee
Simon Geisler
Stephan Gunnemann
Rudolph Triebel
OODD
96
4
0
11 Nov 2023
A Saliency-based Clustering Framework for Identifying Aberrant
  Predictions
A Saliency-based Clustering Framework for Identifying Aberrant Predictions
A. Tersol Montserrat
Alexander R. Loftus
Yael Daihes
89
0
0
11 Nov 2023
EviPrompt: A Training-Free Evidential Prompt Generation Method for
  Segment Anything Model in Medical Images
EviPrompt: A Training-Free Evidential Prompt Generation Method for Segment Anything Model in Medical Images
Yinsong Xu
Jiaqi Tang
Aidong Men
Qingchao Chen
VLMMedIm
90
7
0
10 Nov 2023
EVORA: Deep Evidential Traversability Learning for Risk-Aware Off-Road
  Autonomy
EVORA: Deep Evidential Traversability Learning for Risk-Aware Off-Road Autonomy
Xiaoyi Cai
Siddharth Ancha
Lakshay Sharma
Philip R. Osteen
Bernadette Bucher
Stephen Phillips
Jiuguang Wang
Michael Everett
Nicholas Roy
Jonathan P. How
EDL
97
36
0
10 Nov 2023
MonoProb: Self-Supervised Monocular Depth Estimation with Interpretable
  Uncertainty
MonoProb: Self-Supervised Monocular Depth Estimation with Interpretable Uncertainty
Rémi Marsal
F. Chabot
Angélique Loesch
William Grolleau
H. Sahbi
MDEUQCV
90
8
0
10 Nov 2023
Diagonal Hierarchical Consistency Learning for Semi-supervised Medical
  Image Segmentation
Diagonal Hierarchical Consistency Learning for Semi-supervised Medical Image Segmentation
Heejoon Koo
88
0
0
10 Nov 2023
Improvements on Uncertainty Quantification for Node Classification via
  Distance-Based Regularization
Improvements on Uncertainty Quantification for Node Classification via Distance-Based Regularization
Russell Hart
Linlin Yu
Yifei Lou
Feng Chen
UQCV
71
4
0
10 Nov 2023
Beyond the training set: an intuitive method for detecting distribution
  shift in model-based optimization
Beyond the training set: an intuitive method for detecting distribution shift in model-based optimization
Farhan N. Damani
David H. Brookes
Theodore Sternlieb
Cameron Webster
Stephen Malina
Rishi Jajoo
Kathy Lin
Sam Sinai
OffRL
94
3
0
09 Nov 2023
A Survey on Hallucination in Large Language Models: Principles,
  Taxonomy, Challenges, and Open Questions
A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions
Lei Huang
Weijiang Yu
Weitao Ma
Weihong Zhong
Zhangyin Feng
...
Qianglong Chen
Weihua Peng
Xiaocheng Feng
Bing Qin
Ting Liu
LRMHILM
145
939
0
09 Nov 2023
Domain Adaptive Object Detection via Balancing Between Self-Training and
  Adversarial Learning
Domain Adaptive Object Detection via Balancing Between Self-Training and Adversarial Learning
Muhammad Akhtar Munir
M. H. Khan
M. Sarfraz
Mohsen Ali
ObjD
99
8
0
08 Nov 2023
MixtureGrowth: Growing Neural Networks by Recombining Learned Parameters
MixtureGrowth: Growing Neural Networks by Recombining Learned Parameters
Chau Pham
Piotr Teterwak
Soren Nelson
Bryan A. Plummer
91
4
0
07 Nov 2023
Preventing Arbitrarily High Confidence on Far-Away Data in
  Point-Estimated Discriminative Neural Networks
Preventing Arbitrarily High Confidence on Far-Away Data in Point-Estimated Discriminative Neural Networks
Ahmad Rashid
Serena Hacker
Guojun Zhang
Agustinus Kristiadi
Pascal Poupart
OODD
92
0
0
07 Nov 2023
Cal-DETR: Calibrated Detection Transformer
Cal-DETR: Calibrated Detection Transformer
Muhammad Akhtar Munir
Salman Khan
Muhammad Haris Khan
Mohsen Ali
Fahad Shahbaz Khan
92
9
0
06 Nov 2023
Uncertainty Estimation for Safety-critical Scene Segmentation via
  Fine-grained Reward Maximization
Uncertainty Estimation for Safety-critical Scene Segmentation via Fine-grained Reward Maximization
Hongzheng Yang
Cheng Chen
Yueyao Chen
Markus Scheppach
Hon-Chi Yip
Qi Dou
EDLUQCV
70
8
0
05 Nov 2023
Uncertainty Quantification in Multivariable Regression for Material
  Property Prediction with Bayesian Neural Networks
Uncertainty Quantification in Multivariable Regression for Material Property Prediction with Bayesian Neural Networks
Longze Li
Jiang Chang
Aleksandar Vakanski
Yachun Wang
Tiankai Yao
Min Xian
AI4CE
66
22
0
04 Nov 2023
Uncertainty Quantification of Deep Learning for Spatiotemporal Data:
  Challenges and Opportunities
Uncertainty Quantification of Deep Learning for Spatiotemporal Data: Challenges and Opportunities
Wenchong He
Zhe Jiang
110
1
0
04 Nov 2023
Estimating 3D Uncertainty Field: Quantifying Uncertainty for Neural
  Radiance Fields
Estimating 3D Uncertainty Field: Quantifying Uncertainty for Neural Radiance Fields
Jianxiong Shen
Ruijie Ren
Adria Ruiz
Francesc Moreno-Noguer
103
10
0
03 Nov 2023
Learning to Augment Distributions for Out-of-Distribution Detection
Learning to Augment Distributions for Out-of-Distribution Detection
Qizhou Wang
Zhen Fang
Yonggang Zhang
Feng Liu
Yixuan Li
Bo Han
OODD
128
39
0
03 Nov 2023
Conformal Policy Learning for Sensorimotor Control Under Distribution
  Shifts
Conformal Policy Learning for Sensorimotor Control Under Distribution Shifts
Huang Huang
Satvik Sharma
Antonio Loquercio
Anastasios Nikolas Angelopoulos
Kenneth Y. Goldberg
Jitendra Malik
108
6
0
02 Nov 2023
Resilient Multiple Choice Learning: A learned scoring scheme with
  application to audio scene analysis
Resilient Multiple Choice Learning: A learned scoring scheme with application to audio scene analysis
Victor Letzelter
Mathieu Fontaine
Mickaël Chen
Patrick Pérez
S. Essid
Ga¨el Richard
55
8
0
02 Nov 2023
Tailoring Mixup to Data for Calibration
Tailoring Mixup to Data for Calibration
Quentin Bouniot
Pavlo Mozharovskyi
Florence dÁlché-Buc
157
1
0
02 Nov 2023
Uncertainty quantification and out-of-distribution detection using
  surjective normalizing flows
Uncertainty quantification and out-of-distribution detection using surjective normalizing flows
Simon Dirmeier
Ye Hong
Yanan Xin
Fernando Pérez-Cruz
UQCV
67
1
0
01 Nov 2023
Previous
123...171819...636465
Next