46
1

A Metacognitive Approach to Out-of-Distribution Detection for Segmentation

Abstract

Despite outstanding semantic scene segmentation in closed-worlds, deep neural networks segment novel instances poorly, which is required for autonomous agents acting in an open world. To improve out-of-distribution (OOD) detection for segmentation, we introduce a metacognitive approach in the form of a lightweight module that leverages entropy measures, segmentation predictions, and spatial context to characterize the segmentation model's uncertainty and detect pixel-wise OOD data in real-time. Additionally, our approach incorporates a novel method of generating synthetic OOD data in context with in-distribution data, which we use to fine-tune existing segmentation models with maximum entropy training. This further improves the metacognitive module's performance without requiring access to OOD data while enabling compatibility with established pre-trained models. Our resulting approach can reliably detect OOD instances in a scene, as shown by state-of-the-art performance on OOD detection for semantic segmentation benchmarks.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.