ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.01474
  4. Cited By
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
v1v2v3 (latest)

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

5 December 2016
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles"

50 / 3,224 papers shown
Title
Good Initializations of Variational Bayes for Deep Models
Good Initializations of Variational Bayes for Deep Models
Simone Rossi
Pietro Michiardi
Maurizio Filippone
BDL
128
22
0
18 Oct 2018
Deep Imitative Models for Flexible Inference, Planning, and Control
Deep Imitative Models for Flexible Inference, Planning, and Control
Nicholas Rhinehart
R. McAllister
Sergey Levine
98
149
0
15 Oct 2018
Uncertainty in Neural Networks: Approximately Bayesian Ensembling
Uncertainty in Neural Networks: Approximately Bayesian Ensembling
Tim Pearce
Felix Leibfried
Alexandra Brintrup
Mohamed H. Zaki
A. Neely
BDLUQCV
77
199
0
12 Oct 2018
Predictive Uncertainty through Quantization
Predictive Uncertainty through Quantization
Bastiaan S. Veeling
Rianne van den Berg
Max Welling
UQCV
52
1
0
12 Oct 2018
Deterministic Variational Inference for Robust Bayesian Neural Networks
Deterministic Variational Inference for Robust Bayesian Neural Networks
Anqi Wu
Sebastian Nowozin
Edward Meeds
Richard Turner
José Miguel Hernández-Lobato
Alexander L. Gaunt
UQCVAAMLBDL
100
16
0
09 Oct 2018
HG-DAgger: Interactive Imitation Learning with Human Experts
HG-DAgger: Interactive Imitation Learning with Human Experts
Michael Kelly
Chelsea Sidrane
Katherine Driggs-Campbell
Mykel J. Kochenderfer
OffRL
238
231
0
05 Oct 2018
Inhibited Softmax for Uncertainty Estimation in Neural Networks
Inhibited Softmax for Uncertainty Estimation in Neural Networks
Marcin Mo.zejko
Mateusz Susik
Rafal Karczewski
UQCV
75
29
0
03 Oct 2018
WAIC, but Why? Generative Ensembles for Robust Anomaly Detection
WAIC, but Why? Generative Ensembles for Robust Anomaly Detection
Hyun-Jae Choi
Eric Jang
Alexander A. Alemi
OODD
103
82
0
02 Oct 2018
Probabilistic Meta-Representations Of Neural Networks
Probabilistic Meta-Representations Of Neural Networks
Theofanis Karaletsos
Peter Dayan
Zoubin Ghahramani
BDL
110
26
0
01 Oct 2018
Learning for Single-Shot Confidence Calibration in Deep Neural Networks
  through Stochastic Inferences
Learning for Single-Shot Confidence Calibration in Deep Neural Networks through Stochastic Inferences
Seonguk Seo
Paul Hongsuck Seo
Bohyung Han
FedMLUQCVBDL
163
76
0
28 Sep 2018
Dropout Distillation for Efficiently Estimating Model Confidence
Dropout Distillation for Efficiently Estimating Model Confidence
Corina Gurau
Alex Bewley
Ingmar Posner
BDLUQCV
50
19
0
27 Sep 2018
Towards increased trustworthiness of deep learning segmentation methods
  on cardiac MRI
Towards increased trustworthiness of deep learning segmentation methods on cardiac MRI
Jörg Sander
B. D. de Vos
J. Wolterink
Ivana Išgum
55
59
0
27 Sep 2018
Floyd-Warshall Reinforcement Learning: Learning from Past Experiences to
  Reach New Goals
Floyd-Warshall Reinforcement Learning: Learning from Past Experiences to Reach New Goals
Vikas Dhiman
Shurjo Banerjee
J. Siskind
Jason J. Corso
OffRL
61
13
0
25 Sep 2018
Deep Confidence: A Computationally Efficient Framework for Calculating
  Reliable Errors for Deep Neural Networks
Deep Confidence: A Computationally Efficient Framework for Calculating Reliable Errors for Deep Neural Networks
I. Cortés-Ciriano
A. Bender
OODUQCV
67
61
0
24 Sep 2018
Evaluating Merging Strategies for Sampling-based Uncertainty Techniques
  in Object Detection
Evaluating Merging Strategies for Sampling-based Uncertainty Techniques in Object Detection
Dimity Miller
Feras Dayoub
Michael Milford
Niko Sünderhauf
115
108
0
17 Sep 2018
A Less Biased Evaluation of Out-of-distribution Sample Detectors
A Less Biased Evaluation of Out-of-distribution Sample Detectors
Alireza Shafaei
Mark Schmidt
James J. Little
OODD
129
58
0
13 Sep 2018
Discriminative out-of-distribution detection for semantic segmentation
Discriminative out-of-distribution detection for semantic segmentation
Petra Bevandić
Ivan Kreso
Marin Orsic
Sinisa Segvic
79
80
0
23 Aug 2018
zoNNscan : a boundary-entropy index for zone inspection of neural models
zoNNscan : a boundary-entropy index for zone inspection of neural models
Adel Jaouen
Erwan Le Merrer
UQCV
62
3
0
21 Aug 2018
Controlling Over-generalization and its Effect on Adversarial Examples
  Generation and Detection
Controlling Over-generalization and its Effect on Adversarial Examples Generation and Detection
Mahdieh Abbasi
Arezoo Rajabi
A. Mozafari
R. Bobba
Christian Gagné
AAML
74
9
0
21 Aug 2018
Out-of-Distribution Detection using Multiple Semantic Label
  Representations
Out-of-Distribution Detection using Multiple Semantic Label Representations
Gabi Shalev
Yossi Adi
Joseph Keshet
OODD
92
85
0
20 Aug 2018
Uncertainty-aware Short-term Motion Prediction of Traffic Actors for
  Autonomous Driving
Uncertainty-aware Short-term Motion Prediction of Traffic Actors for Autonomous Driving
Nemanja Djuric
Vladan Radosavljevic
Henggang Cui
Thi Nguyen
Fang-Chieh Chou
Tsung-Han Lin
Nitin Singh
J. Schneider
109
206
0
17 Aug 2018
Deep Convolutional Networks as shallow Gaussian Processes
Deep Convolutional Networks as shallow Gaussian Processes
Adrià Garriga-Alonso
C. Rasmussen
Laurence Aitchison
BDLUQCV
116
271
0
16 Aug 2018
Parkinson's Disease Assessment from a Wrist-Worn Wearable Sensor in
  Free-Living Conditions: Deep Ensemble Learning and Visualization
Parkinson's Disease Assessment from a Wrist-Worn Wearable Sensor in Free-Living Conditions: Deep Ensemble Learning and Visualization
T. T. Um
Franz MJ Pfister
Daniel C. Pichler
Satoshi Endo
Muriel Lang
Sandra Hirche
U. Fietzek
Dana Kulić
41
17
0
08 Aug 2018
EnsembleDAgger: A Bayesian Approach to Safe Imitation Learning
EnsembleDAgger: A Bayesian Approach to Safe Imitation Learning
Kunal Menda
Katherine Driggs-Campbell
Mykel J. Kochenderfer
193
119
0
22 Jul 2018
Aleatoric uncertainty estimation with test-time augmentation for medical
  image segmentation with convolutional neural networks
Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
Guotai Wang
Wenqi Li
Michael Aertsen
Jan Deprest
Sebastien Ourselin
Tom Vercauteren
UQCVMedImOOD
170
594
0
19 Jul 2018
Uncertainty in the Variational Information Bottleneck
Uncertainty in the Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
59
100
0
02 Jul 2018
Leveraging Uncertainty Estimates for Predicting Segmentation Quality
Leveraging Uncertainty Estimates for Predicting Segmentation Quality
Terrance Devries
Graham W. Taylor
UQCV
125
114
0
02 Jul 2018
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Accurate Uncertainties for Deep Learning Using Calibrated Regression
Volodymyr Kuleshov
Nathan Fenner
Stefano Ermon
BDLUQCV
214
637
0
01 Jul 2018
A Probabilistic U-Net for Segmentation of Ambiguous Images
A Probabilistic U-Net for Segmentation of Ambiguous Images
Simon A. A. Kohl
Bernardino Romera-Paredes
Clemens Meyer
J. Fauw
J. Ledsam
Klaus H. Maier-Hein
S. M. Ali Eslami
Danilo Jimenez Rezende
Olaf Ronneberger
UQCVSSeg
86
576
0
13 Jun 2018
Improving Regression Performance with Distributional Losses
Improving Regression Performance with Distributional Losses
Ehsan Imani
Martha White
UQCV
71
67
0
12 Jun 2018
Combining Model-Free Q-Ensembles and Model-Based Approaches for Informed
  Exploration
Combining Model-Free Q-Ensembles and Model-Based Approaches for Informed Exploration
Sreecharan Sankaranarayanan
Raghuram Mandyam Annasamy
Katia Sycara
Carolyn Rose
35
0
0
12 Jun 2018
Randomized Prior Functions for Deep Reinforcement Learning
Randomized Prior Functions for Deep Reinforcement Learning
Ian Osband
John Aslanides
Albin Cassirer
UQCVBDL
87
380
0
08 Jun 2018
Uncertainty-driven Sanity Check: Application to Postoperative Brain
  Tumor Cavity Segmentation
Uncertainty-driven Sanity Check: Application to Postoperative Brain Tumor Cavity Segmentation
Alain Jungo
Raphael Meier
E. Ermiş
Evelyn Herrmann
M. Reyes
UQCV
107
47
0
08 Jun 2018
Evidential Deep Learning to Quantify Classification Uncertainty
Evidential Deep Learning to Quantify Classification Uncertainty
Murat Sensoy
Lance M. Kaplan
M. Kandemir
OODUQCVEDLBDL
197
1,008
0
05 Jun 2018
Deep Reinforcement Learning in a Handful of Trials using Probabilistic
  Dynamics Models
Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models
Kurtland Chua
Roberto Calandra
R. McAllister
Sergey Levine
BDL
234
1,288
0
30 May 2018
To Trust Or Not To Trust A Classifier
To Trust Or Not To Trust A Classifier
Heinrich Jiang
Been Kim
Melody Y. Guan
Maya R. Gupta
UQCV
184
473
0
30 May 2018
Lightweight Probabilistic Deep Networks
Lightweight Probabilistic Deep Networks
Jochen Gast
Stefan Roth
UQCVOODBDL
84
183
0
29 May 2018
Bayesian Inference with Anchored Ensembles of Neural Networks, and
  Application to Exploration in Reinforcement Learning
Bayesian Inference with Anchored Ensembles of Neural Networks, and Application to Exploration in Reinforcement Learning
Tim Pearce
Nicolas Anastassacos
Mohamed H. Zaki
A. Neely
BDLUQCV
74
17
0
29 May 2018
Calibrating Deep Convolutional Gaussian Processes
Calibrating Deep Convolutional Gaussian Processes
Gia-Lac Tran
Edwin V. Bonilla
John P. Cunningham
Pietro Michiardi
Maurizio Filippone
BDLUQCV
78
43
0
26 May 2018
Uncertainty-Aware Attention for Reliable Interpretation and Prediction
Uncertainty-Aware Attention for Reliable Interpretation and Prediction
Jay Heo
Haebeom Lee
Saehoon Kim
Juho Lee
Kwang Joon Kim
Eunho Yang
Sung Ju Hwang
OOD
79
87
0
24 May 2018
Likelihood-free inference with emulator networks
Likelihood-free inference with emulator networks
Jan-Matthis Lueckmann
Giacomo Bassetto
Theofanis Karaletsos
Jakob H. Macke
181
128
0
23 May 2018
Bias-Reduced Uncertainty Estimation for Deep Neural Classifiers
Bias-Reduced Uncertainty Estimation for Deep Neural Classifiers
Yonatan Geifman
Guy Uziel
Ran El-Yaniv
UQCV
73
142
0
21 May 2018
Improve Uncertainty Estimation for Unknown Classes in Bayesian Neural Networks with Semi-Supervised /One Set Classification
Buu Phan
UQCVBDL
44
0
0
04 May 2018
DeepTriangle: A Deep Learning Approach to Loss Reserving
DeepTriangle: A Deep Learning Approach to Loss Reserving
Kevin Kuo
75
49
0
24 Apr 2018
Sampling-free Uncertainty Estimation in Gated Recurrent Units with
  Exponential Families
Sampling-free Uncertainty Estimation in Gated Recurrent Units with Exponential Families
Seong Jae Hwang
Ronak R. Mehta
Hyunwoo J. Kim
Vikas Singh
BDLUQCV
61
3
0
19 Apr 2018
The Limits and Potentials of Deep Learning for Robotics
The Limits and Potentials of Deep Learning for Robotics
Niko Sünderhauf
Oliver Brock
Walter J. Scheirer
R. Hadsell
Dieter Fox
...
B. Upcroft
Pieter Abbeel
Wolfram Burgard
Michael Milford
Peter Corke
89
530
0
18 Apr 2018
Improving Confidence Estimates for Unfamiliar Examples
Improving Confidence Estimates for Unfamiliar Examples
Zhizhong Li
Derek Hoiem
89
10
0
09 Apr 2018
Hierarchical Novelty Detection for Visual Object Recognition
Hierarchical Novelty Detection for Visual Object Recognition
Kibok Lee
Kimin Lee
Kyle Min
Y. Zhang
Jinwoo Shin
Honglak Lee
BDL
97
70
0
02 Apr 2018
Calibrated Prediction Intervals for Neural Network Regressors
Calibrated Prediction Intervals for Neural Network Regressors
Gil Keren
N. Cummins
Björn Schuller
UQCV
78
31
0
26 Mar 2018
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust
  Deep Learning
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick McDaniel
OODAAML
156
508
0
13 Mar 2018
Previous
123...636465
Next