ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2302.02936
43
14

Private GANs, Revisited

6 February 2023
Alex Bie
Gautam Kamath
Guojun Zhang
ArXivPDFHTML
Abstract

We show that the canonical approach for training differentially private GANs -- updating the discriminator with differentially private stochastic gradient descent (DPSGD) -- can yield significantly improved results after modifications to training. Specifically, we propose that existing instantiations of this approach neglect to consider how adding noise only to discriminator updates inhibits discriminator training, disrupting the balance between the generator and discriminator necessary for successful GAN training. We show that a simple fix -- taking more discriminator steps between generator steps -- restores parity between the generator and discriminator and improves results. Additionally, with the goal of restoring parity, we experiment with other modifications -- namely, large batch sizes and adaptive discriminator update frequency -- to improve discriminator training and see further improvements in generation quality. Our results demonstrate that on standard image synthesis benchmarks, DPSGD outperforms all alternative GAN privatization schemes. Code: https://github.com/alexbie98/dpgan-revisit.

View on arXiv
Comments on this paper