Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 1,407 papers shown
Title
Convergence of stochastic gradient descent under a local Lojasiewicz condition for deep neural networks
Jing An
Jianfeng Lu
19
4
0
18 Apr 2023
Fast Neural Scene Flow
Xueqian Li
Jianqiao Zheng
Francesco Ferroni
J. K. Pontes
Simon Lucey
29
27
0
18 Apr 2023
Fast and Straggler-Tolerant Distributed SGD with Reduced Computation Load
Maximilian Egger
Serge Kas Hanna
Rawad Bitar
FedML
27
0
0
17 Apr 2023
Communication and Energy Efficient Wireless Federated Learning with Intrinsic Privacy
Zhenxiao Zhang
Yuanxiong Guo
Yuguang Fang
Yanmin Gong
36
4
0
15 Apr 2023
Statistical Analysis of Fixed Mini-Batch Gradient Descent Estimator
Haobo Qi
Feifei Wang
Hansheng Wang
30
13
0
13 Apr 2023
Automatic Gradient Descent: Deep Learning without Hyperparameters
Jeremy Bernstein
Chris Mingard
Kevin Huang
Navid Azizan
Yisong Yue
ODL
16
17
0
11 Apr 2023
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
32
21
0
10 Apr 2023
High-dimensional scaling limits and fluctuations of online least-squares SGD with smooth covariance
Krishnakumar Balasubramanian
Promit Ghosal
Ye He
38
5
0
03 Apr 2023
Fast Convergence of Random Reshuffling under Over-Parameterization and the Polyak-Łojasiewicz Condition
Chen Fan
Christos Thrampoulidis
Mark W. Schmidt
33
2
0
02 Apr 2023
Doubly Stochastic Models: Learning with Unbiased Label Noises and Inference Stability
Haoyi Xiong
Xuhong Li
Bo Yu
Zhanxing Zhu
Dongrui Wu
Dejing Dou
NoLa
14
0
0
01 Apr 2023
Unified analysis of SGD-type methods
Eduard A. Gorbunov
30
2
0
29 Mar 2023
FedAgg: Adaptive Federated Learning with Aggregated Gradients
Wenhao Yuan
Xuehe Wang
FedML
48
0
0
28 Mar 2023
Forget-free Continual Learning with Soft-Winning SubNetworks
Haeyong Kang
Jaehong Yoon
Sultan Rizky Hikmawan Madjid
Sung Ju Hwang
Chang D. Yoo
CLL
36
4
0
27 Mar 2023
Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood Estimation
Ö. Deniz Akyildiz
F. R. Crucinio
Mark Girolami
Tim Johnston
Sotirios Sabanis
32
12
0
23 Mar 2023
Make Landscape Flatter in Differentially Private Federated Learning
Yi Shi
Yingqi Liu
Kang Wei
Li Shen
Xueqian Wang
Dacheng Tao
FedML
25
54
0
20 Mar 2023
Practical and Matching Gradient Variance Bounds for Black-Box Variational Bayesian Inference
Kyurae Kim
Kaiwen Wu
Jisu Oh
Jacob R. Gardner
BDL
31
7
0
18 Mar 2023
On the Utility of Equal Batch Sizes for Inference in Stochastic Gradient Descent
Rahul Singh
A. Shukla
Dootika Vats
32
0
0
14 Mar 2023
Tighter Lower Bounds for Shuffling SGD: Random Permutations and Beyond
Jaeyoung Cha
Jaewook Lee
Chulhee Yun
28
23
0
13 Mar 2023
Boosting Distributed Full-graph GNN Training with Asynchronous One-bit Communication
Mengdie Zhang
Qi Hu
Peng Sun
Yonggang Wen
Tianwei Zhang
GNN
40
5
0
02 Mar 2023
Multi-task neural networks by learned contextual inputs
Anders T. Sandnes
B. Grimstad
O. Kolbjørnsen
14
1
0
01 Mar 2023
Dimension-reduced KRnet maps for high-dimensional Bayesian inverse problems
Yani Feng
Keju Tang
Xiaoliang Wan
Qifeng Liao
19
2
0
01 Mar 2023
D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory
Tianbo Li
Min Lin
Zheyuan Hu
Kunhao Zheng
G. Vignale
Kenji Kawaguchi
A. Neto
K. Novoselov
Shuicheng Yan
162
9
0
01 Mar 2023
Maximum Likelihood With a Time Varying Parameter
Alberto Lanconelli
Christopher S. A. Lauria
16
3
0
28 Feb 2023
Stochastic Gradient Descent under Markovian Sampling Schemes
Mathieu Even
19
28
0
28 Feb 2023
How optimal transport can tackle gender biases in multi-class neural-network classifiers for job recommendations?
Fanny Jourdan
Titon Tshiongo Kaninku
Nicholas M. Asher
Jean-Michel Loubes
Laurent Risser
FaML
26
4
0
27 Feb 2023
Scalable Neural Network Training over Distributed Graphs
Aashish Kolluri
Sarthak Choudhary
Bryan Hooi
Prateek Saxena
GNN
21
0
0
25 Feb 2023
Statistical Inference with Stochastic Gradient Methods under
φ
φ
φ
-mixing Data
Ruiqi Liu
Xinyu Chen
Zuofeng Shang
FedML
19
6
0
24 Feb 2023
Why Target Networks Stabilise Temporal Difference Methods
Matt Fellows
Matthew Smith
Shimon Whiteson
OOD
AAML
21
7
0
24 Feb 2023
Advancements in Federated Learning: Models, Methods, and Privacy
Hui Chen
Huandong Wang
Qingyue Long
Depeng Jin
Yong Li
FedML
44
14
0
22 Feb 2023
Stochastic Approximation Beyond Gradient for Signal Processing and Machine Learning
Aymeric Dieuleveut
G. Fort
Eric Moulines
Hoi-To Wai
59
12
0
22 Feb 2023
WW-FL: Secure and Private Large-Scale Federated Learning
F. Marx
T. Schneider
Ajith Suresh
Tobias Wehrle
Christian Weinert
Hossein Yalame
FedML
25
2
0
20 Feb 2023
Statistical Inference for Linear Functionals of Online SGD in High-dimensional Linear Regression
Bhavya Agrawalla
Krishnakumar Balasubramanian
Promit Ghosal
25
2
0
20 Feb 2023
MaxGNR: A Dynamic Weight Strategy via Maximizing Gradient-to-Noise Ratio for Multi-Task Learning
Caoyun Fan
Wenqing Chen
Jidong Tian
Yitian Li
Hao He
Yaohui Jin
19
2
0
18 Feb 2023
SGD with AdaGrad Stepsizes: Full Adaptivity with High Probability to Unknown Parameters, Unbounded Gradients and Affine Variance
Amit Attia
Tomer Koren
ODL
22
25
0
17 Feb 2023
On the convergence result of the gradient-push algorithm on directed graphs with constant stepsize
Woocheol Choi
Doheon Kim
S. Yun
29
1
0
17 Feb 2023
A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk Minimization
Mathieu Dagréou
Thomas Moreau
Samuel Vaiter
Pierre Ablin
39
12
0
17 Feb 2023
Statistically Optimal Force Aggregation for Coarse-Graining Molecular Dynamics
Andreas Krämer
Aleksander E. P. Durumeric
N. Charron
Yaoyi Chen
C. Clementi
Frank Noé
AI4CE
30
20
0
14 Feb 2023
Beyond Uniform Smoothness: A Stopped Analysis of Adaptive SGD
Matthew Faw
Litu Rout
C. Caramanis
Sanjay Shakkottai
21
37
0
13 Feb 2023
Near-Optimal Non-Convex Stochastic Optimization under Generalized Smoothness
Zijian Liu
Srikanth Jagabathula
Zhengyuan Zhou
24
5
0
13 Feb 2023
Cyclic and Randomized Stepsizes Invoke Heavier Tails in SGD than Constant Stepsize
Mert Gurbuzbalaban
Yuanhan Hu
Umut Simsekli
Lingjiong Zhu
LRM
23
1
0
10 Feb 2023
On the Convergence of Stochastic Gradient Descent for Linear Inverse Problems in Banach Spaces
Ž. Kereta
Bangti Jin
26
6
0
10 Feb 2023
On the Privacy-Robustness-Utility Trilemma in Distributed Learning
Youssef Allouah
R. Guerraoui
Nirupam Gupta
Rafael Pinot
John Stephan
FedML
26
21
0
09 Feb 2023
Extragradient-Type Methods with
O
(
1
/
k
)
\mathcal{O} (1/k)
O
(
1/
k
)
Last-Iterate Convergence Rates for Co-Hypomonotone Inclusions
Quoc Tran-Dinh
31
2
0
08 Feb 2023
Improving the Model Consistency of Decentralized Federated Learning
Yi Shi
Li Shen
Kang Wei
Yan Sun
Bo Yuan
Xueqian Wang
Dacheng Tao
FedML
36
51
0
08 Feb 2023
Target-based Surrogates for Stochastic Optimization
J. Lavington
Sharan Vaswani
Reza Babanezhad
Mark W. Schmidt
Nicolas Le Roux
55
5
0
06 Feb 2023
Fixing by Mixing: A Recipe for Optimal Byzantine ML under Heterogeneity
Youssef Allouah
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
Rafael Pinot
John Stephan
FedML
45
49
0
03 Feb 2023
Rethinking Semi-Supervised Medical Image Segmentation: A Variance-Reduction Perspective
Chenyu You
Weicheng Dai
Yifei Min
Fenglin Liu
David A. Clifton
S. Kevin Zhou
Lawrence H. Staib
James S Duncan
23
69
0
03 Feb 2023
A Survey on Efficient Training of Transformers
Bohan Zhuang
Jing Liu
Zizheng Pan
Haoyu He
Yuetian Weng
Chunhua Shen
31
47
0
02 Feb 2023
Deep networks for system identification: a Survey
G. Pillonetto
Aleksandr Aravkin
Daniel Gedon
L. Ljung
Antônio H. Ribeiro
Thomas B. Schon
OOD
37
36
0
30 Jan 2023
Distributed Stochastic Optimization under a General Variance Condition
Kun-Yen Huang
Xiao Li
Shin-Yi Pu
FedML
43
6
0
30 Jan 2023
Previous
1
2
3
...
7
8
9
...
27
28
29
Next