Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
v1
v2
v3 (latest)
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 867 papers shown
Title
Stochastic gradient descent with noise of machine learning type. Part I: Discrete time analysis
Stephan Wojtowytsch
76
52
0
04 May 2021
GT-STORM: Taming Sample, Communication, and Memory Complexities in Decentralized Non-Convex Learning
Xin Zhang
Jia Liu
Zhengyuan Zhu
Elizabeth S. Bentley
84
14
0
04 May 2021
Convergence Analysis and System Design for Federated Learning over Wireless Networks
Shuo Wan
Jiaxun Lu
Pingyi Fan
Yunfeng Shao
Chenghui Peng
Khaled B. Letaief
82
55
0
30 Apr 2021
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training
Jianfei Chen
Lianmin Zheng
Z. Yao
Dequan Wang
Ion Stoica
Michael W. Mahoney
Joseph E. Gonzalez
MQ
77
75
0
29 Apr 2021
Feasibility-based Fixed Point Networks
Howard Heaton
Samy Wu Fung
A. Gibali
W. Yin
57
26
0
29 Apr 2021
Confined Gradient Descent: Privacy-preserving Optimization for Federated Learning
Yanjun Zhang
Guangdong Bai
Xue Li
Surya Nepal
R. Ko
FedML
32
2
0
27 Apr 2021
Semi-Decentralized Federated Edge Learning for Fast Convergence on Non-IID Data
Yuchang Sun
Jiawei Shao
Yuyi Mao
Jessie Hui Wang
Jun Zhang
FedML
111
39
0
26 Apr 2021
Improved Analysis and Rates for Variance Reduction under Without-replacement Sampling Orders
Xinmeng Huang
Kun Yuan
Xianghui Mao
W. Yin
64
13
0
25 Apr 2021
Random Reshuffling with Variance Reduction: New Analysis and Better Rates
Grigory Malinovsky
Alibek Sailanbayev
Peter Richtárik
56
21
0
19 Apr 2021
The mixed deep energy method for resolving concentration features in finite strain hyperelasticity
J. Fuhg
N. Bouklas
PINN
AI4CE
81
95
0
15 Apr 2021
Sample-based and Feature-based Federated Learning for Unconstrained and Constrained Nonconvex Optimization via Mini-batch SSCA
Ying Cui
Yangchen Li
Chencheng Ye
FedML
36
7
0
13 Apr 2021
Distributed Learning Systems with First-order Methods
Ji Liu
Ce Zhang
36
44
0
12 Apr 2021
Joint Optimization of Communications and Federated Learning Over the Air
Xin-Yue Fan
Yue Wang
Yan Huo
Z. Tian
FedML
56
55
0
08 Apr 2021
Finite-Time Convergence Rates of Nonlinear Two-Time-Scale Stochastic Approximation under Markovian Noise
Thinh T. Doan
94
16
0
04 Apr 2021
A proof of convergence for stochastic gradient descent in the training of artificial neural networks with ReLU activation for constant target functions
Arnulf Jentzen
Adrian Riekert
MLT
86
13
0
01 Apr 2021
Multi-Source Causal Inference Using Control Variates
Wenshuo Guo
S. Wang
Peng Ding
Yixin Wang
Michael I. Jordan
CML
101
19
0
30 Mar 2021
Hierarchical Federated Learning with Quantization: Convergence Analysis and System Design
Lumin Liu
Jun Zhang
Shenghui Song
Khaled B. Letaief
FedML
70
87
0
26 Mar 2021
The Gradient Convergence Bound of Federated Multi-Agent Reinforcement Learning with Efficient Communication
Xing Xu
Rongpeng Li
Zhifeng Zhao
Honggang Zhang
84
12
0
24 Mar 2021
Adaptive deep density approximation for Fokker-Planck equations
Keju Tang
Xiaoliang Wan
Qifeng Liao
93
40
0
20 Mar 2021
Distributed Deep Learning Using Volunteer Computing-Like Paradigm
Medha Atre
B. Jha
Ashwini Rao
91
11
0
16 Mar 2021
Transient growth of accelerated optimization algorithms
Hesameddin Mohammadi
Samantha Samuelson
M. Jovanović
32
8
0
14 Mar 2021
Efficient Randomized Subspace Embeddings for Distributed Optimization under a Communication Budget
R. Saha
Mert Pilanci
Andrea J. Goldsmith
100
5
0
13 Mar 2021
A Distributed Optimisation Framework Combining Natural Gradient with Hessian-Free for Discriminative Sequence Training
Adnan Haider
Chao Zhang
Florian Kreyssig
P. Woodland
112
7
0
12 Mar 2021
EventGraD: Event-Triggered Communication in Parallel Machine Learning
Soumyadip Ghosh
B. Aquino
V. Gupta
FedML
101
9
0
12 Mar 2021
An Introduction to Deep Generative Modeling
Lars Ruthotto
E. Haber
AI4CE
118
232
0
09 Mar 2021
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
96
112
0
08 Mar 2021
On the Importance of Sampling in Training GCNs: Tighter Analysis and Variance Reduction
Weilin Cong
M. Ramezani
M. Mahdavi
62
5
0
03 Mar 2021
Adaptive Transmission Scheduling in Wireless Networks for Asynchronous Federated Learning
Hyun-Suk Lee
Jang-Won Lee
139
55
0
02 Mar 2021
Gradient Descent on Neural Networks Typically Occurs at the Edge of Stability
Jeremy M. Cohen
Simran Kaur
Yuanzhi Li
J. Zico Kolter
Ameet Talwalkar
ODL
133
279
0
26 Feb 2021
Wirelessly Powered Federated Edge Learning: Optimal Tradeoffs Between Convergence and Power Transfer
Qunsong Zeng
Yuqing Du
Kaibin Huang
92
37
0
24 Feb 2021
Escaping from Zero Gradient: Revisiting Action-Constrained Reinforcement Learning via Frank-Wolfe Policy Optimization
Jyun-Li Lin
Wei-Ting Hung
Shangtong Yang
Ping-Chun Hsieh
Xi Liu
110
14
0
22 Feb 2021
AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods
Zheng Shi
Abdurakhmon Sadiev
Nicolas Loizou
Peter Richtárik
Martin Takávc
ODL
84
13
0
19 Feb 2021
Finite-Sample Analysis of Off-Policy Natural Actor-Critic Algorithm
S. Khodadadian
Zaiwei Chen
S. T. Maguluri
CML
OffRL
137
27
0
18 Feb 2021
Differential Privacy and Byzantine Resilience in SGD: Do They Add Up?
R. Guerraoui
Nirupam Gupta
Rafael Pinot
Sébastien Rouault
John Stephan
76
30
0
16 Feb 2021
Learning by Turning: Neural Architecture Aware Optimisation
Yang Liu
Jeremy Bernstein
M. Meister
Yisong Yue
ODL
127
26
0
14 Feb 2021
Newton Method over Networks is Fast up to the Statistical Precision
Amir Daneshmand
G. Scutari
Pavel Dvurechensky
Alexander Gasnikov
72
22
0
12 Feb 2021
Straggler-Resilient Distributed Machine Learning with Dynamic Backup Workers
Guojun Xiong
Gang Yan
Rahul Singh
Jian Li
65
13
0
11 Feb 2021
An Adaptive Stochastic Sequential Quadratic Programming with Differentiable Exact Augmented Lagrangians
Sen Na
M. Anitescu
Mladen Kolar
85
44
0
10 Feb 2021
Consensus Control for Decentralized Deep Learning
Lingjing Kong
Tao R. Lin
Anastasia Koloskova
Martin Jaggi
Sebastian U. Stich
53
80
0
09 Feb 2021
Quasi-Global Momentum: Accelerating Decentralized Deep Learning on Heterogeneous Data
Tao R. Lin
Sai Praneeth Karimireddy
Sebastian U. Stich
Martin Jaggi
FedML
107
101
0
09 Feb 2021
Large-Scale Training System for 100-Million Classification at Alibaba
Liuyihan Song
Pan Pan
Kang Zhao
Hao Yang
Yiming Chen
Yingya Zhang
Yinghui Xu
Rong Jin
86
24
0
09 Feb 2021
Adaptive Quantization of Model Updates for Communication-Efficient Federated Learning
Divyansh Jhunjhunwala
Advait Gadhikar
Gauri Joshi
Yonina C. Eldar
FedML
MQ
76
112
0
08 Feb 2021
SGD in the Large: Average-case Analysis, Asymptotics, and Stepsize Criticality
Courtney Paquette
Kiwon Lee
Fabian Pedregosa
Elliot Paquette
59
35
0
08 Feb 2021
Federated Learning on the Road: Autonomous Controller Design for Connected and Autonomous Vehicles
Tengchan Zeng
Omid Semiariy
Mingzhe Chen
Walid Saad
M. Bennis
FedML
61
86
0
05 Feb 2021
Local Critic Training for Model-Parallel Learning of Deep Neural Networks
Hojung Lee
Cho-Jui Hsieh
Jong-Seok Lee
63
15
0
03 Feb 2021
The Min-Max Complexity of Distributed Stochastic Convex Optimization with Intermittent Communication
Blake E. Woodworth
Brian Bullins
Ohad Shamir
Nathan Srebro
67
49
0
02 Feb 2021
A Lyapunov Theory for Finite-Sample Guarantees of Asynchronous Q-Learning and TD-Learning Variants
Zaiwei Chen
S. T. Maguluri
Sanjay Shakkottai
Karthikeyan Shanmugam
OffRL
213
55
0
02 Feb 2021
Stochastic Online Convex Optimization. Application to probabilistic time series forecasting
Olivier Wintenberger
AI4TS
107
8
0
01 Feb 2021
Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in Imbalanced Training
Cong Fang
Hangfeng He
Qi Long
Weijie J. Su
FAtt
205
172
0
29 Jan 2021
Byzantine Fault-Tolerance in Peer-to-Peer Distributed Gradient-Descent
Nirupam Gupta
Nitin H. Vaidya
66
15
0
28 Jan 2021
Previous
1
2
3
...
7
8
9
...
16
17
18
Next