Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.04838
Cited By
Optimization Methods for Large-Scale Machine Learning
15 June 2016
Léon Bottou
Frank E. Curtis
J. Nocedal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimization Methods for Large-Scale Machine Learning"
50 / 1,407 papers shown
Title
Masked Training of Neural Networks with Partial Gradients
Amirkeivan Mohtashami
Martin Jaggi
Sebastian U. Stich
27
22
0
16 Jun 2021
A Survey on Fault-tolerance in Distributed Optimization and Machine Learning
Shuo Liu
AI4CE
OOD
58
13
0
16 Jun 2021
On the Sample Complexity and Metastability of Heavy-tailed Policy Search in Continuous Control
Amrit Singh Bedi
Anjaly Parayil
Junyu Zhang
Mengdi Wang
Alec Koppel
38
15
0
15 Jun 2021
RCURRENCY: Live Digital Asset Trading Using a Recurrent Neural Network-based Forecasting System
Yapeng Hu
R. V. Gurp
Ashay Somai
H. Kooijman
Jan S. Rellermeyer
30
0
0
13 Jun 2021
Federated Learning with Buffered Asynchronous Aggregation
John Nguyen
Kshitiz Malik
Hongyuan Zhan
Ashkan Yousefpour
Michael G. Rabbat
Mani Malek
Dzmitry Huba
FedML
43
290
0
11 Jun 2021
Decoupled Greedy Learning of CNNs for Synchronous and Asynchronous Distributed Learning
Eugene Belilovsky
Louis Leconte
Lucas Caccia
Michael Eickenberg
Edouard Oyallon
24
7
0
11 Jun 2021
DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm via Langevin Monte Carlo within Gibbs
Vincent Plassier
Maxime Vono
Alain Durmus
Eric Moulines
27
17
0
11 Jun 2021
A Decentralized Adaptive Momentum Method for Solving a Class of Min-Max Optimization Problems
Babak Barazandeh
Tianjian Huang
George Michailidis
37
12
0
10 Jun 2021
A Continuized View on Nesterov Acceleration for Stochastic Gradient Descent and Randomized Gossip
Mathieu Even
Raphael Berthier
Francis R. Bach
Nicolas Flammarion
Pierre Gaillard
Hadrien Hendrikx
Laurent Massoulié
Adrien B. Taylor
13
20
0
10 Jun 2021
The dilemma of quantum neural networks
Yan Qian
Xinbiao Wang
Yuxuan Du
Xingyao Wu
Dacheng Tao
21
30
0
09 Jun 2021
Asynchronous Distributed Optimization with Redundancy in Cost Functions
Shuo Liu
Nirupam Gupta
Nitin H. Vaidya
31
3
0
07 Jun 2021
Dynamics of Stochastic Momentum Methods on Large-scale, Quadratic Models
Courtney Paquette
Elliot Paquette
ODL
32
13
0
07 Jun 2021
Stein ICP for Uncertainty Estimation in Point Cloud Matching
F. A. Maken
Fabio Ramos
Lionel Ott
3DV
3DPC
39
25
0
07 Jun 2021
SpreadGNN: Serverless Multi-task Federated Learning for Graph Neural Networks
Chaoyang He
Emir Ceyani
Keshav Balasubramanian
M. Annavaram
Salman Avestimehr
FedML
25
50
0
04 Jun 2021
An Even More Optimal Stochastic Optimization Algorithm: Minibatching and Interpolation Learning
Blake E. Woodworth
Nathan Srebro
25
21
0
04 Jun 2021
Stochastic gradient descent with noise of machine learning type. Part II: Continuous time analysis
Stephan Wojtowytsch
39
33
0
04 Jun 2021
Debiasing a First-order Heuristic for Approximate Bi-level Optimization
Valerii Likhosherstov
Xingyou Song
K. Choromanski
Jared Davis
Adrian Weller
AI4CE
19
5
0
04 Jun 2021
Local Adaptivity in Federated Learning: Convergence and Consistency
Jianyu Wang
Zheng Xu
Zachary Garrett
Zachary B. Charles
Luyang Liu
Gauri Joshi
FedML
37
39
0
04 Jun 2021
Improving Neural Network Robustness via Persistency of Excitation
Kaustubh Sridhar
O. Sokolsky
Insup Lee
James Weimer
AAML
12
20
0
03 Jun 2021
Tight High Probability Bounds for Linear Stochastic Approximation with Fixed Stepsize
Alain Durmus
Eric Moulines
A. Naumov
S. Samsonov
Kevin Scaman
Hoi-To Wai
37
20
0
02 Jun 2021
Fine-grained Generalization Analysis of Structured Output Prediction
Waleed Mustafa
Yunwen Lei
Antoine Ledent
Marius Kloft
8
9
0
31 May 2021
Generalized AdaGrad (G-AdaGrad) and Adam: A State-Space Perspective
Kushal Chakrabarti
Nikhil Chopra
ODL
AI4CE
40
9
0
31 May 2021
Energy-Efficient and Federated Meta-Learning via Projected Stochastic Gradient Ascent
Anis Elgabli
Chaouki Ben Issaid
Amrit Singh Bedi
M. Bennis
Vaneet Aggarwal
FedML
26
4
0
31 May 2021
Detecting Backdoor in Deep Neural Networks via Intentional Adversarial Perturbations
Mingfu Xue
Yinghao Wu
Zhiyu Wu
Yushu Zhang
Jian Wang
Weiqiang Liu
AAML
11
12
0
29 May 2021
A Stochastic Alternating Balance
k
k
k
-Means Algorithm for Fair Clustering
Suyun Liu
Luis Nunes Vicente
30
11
0
29 May 2021
On Linear Stability of SGD and Input-Smoothness of Neural Networks
Chao Ma
Lexing Ying
MLT
25
44
0
27 May 2021
SGD with Coordinate Sampling: Theory and Practice
Rémi Leluc
Franccois Portier
27
6
0
25 May 2021
Online Statistical Inference for Parameters Estimation with Linear-Equality Constraints
Ruiqi Liu
Mingao Yuan
Zuofeng Shang
16
6
0
21 May 2021
A Measure of Research Taste
V. Koltun
David Hafner
25
1
0
17 May 2021
Clustered Sampling: Low-Variance and Improved Representativity for Clients Selection in Federated Learning
Yann Fraboni
Richard Vidal
Laetitia Kameni
Marco Lorenzi
FedML
21
184
0
12 May 2021
A Twin Neural Model for Uplift
Mouloud Belbahri
Olivier Gandouet
A. Murua
V. Nia
CML
6
1
0
11 May 2021
A Geometric Analysis of Neural Collapse with Unconstrained Features
Zhihui Zhu
Tianyu Ding
Jinxin Zhou
Xiao Li
Chong You
Jeremias Sulam
Qing Qu
40
197
0
06 May 2021
Stochastic gradient descent with noise of machine learning type. Part I: Discrete time analysis
Stephan Wojtowytsch
25
50
0
04 May 2021
GT-STORM: Taming Sample, Communication, and Memory Complexities in Decentralized Non-Convex Learning
Xin Zhang
Jia Liu
Zhengyuan Zhu
Elizabeth S. Bentley
51
14
0
04 May 2021
Convergence Analysis and System Design for Federated Learning over Wireless Networks
Shuo Wan
Jiaxun Lu
Pingyi Fan
Yunfeng Shao
Chenghui Peng
Khaled B. Letaief
47
54
0
30 Apr 2021
Stochastic Mirror Descent for Low-Rank Tensor Decomposition Under Non-Euclidean Losses
Wenqiang Pu
Shahana Ibrahim
Xiao Fu
Mingyi Hong
22
9
0
29 Apr 2021
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training
Jianfei Chen
Lianmin Zheng
Z. Yao
Dequan Wang
Ion Stoica
Michael W. Mahoney
Joseph E. Gonzalez
MQ
32
74
0
29 Apr 2021
Feasibility-based Fixed Point Networks
Howard Heaton
Samy Wu Fung
A. Gibali
W. Yin
29
26
0
29 Apr 2021
Confined Gradient Descent: Privacy-preserving Optimization for Federated Learning
Yanjun Zhang
Guangdong Bai
Xue Li
Surya Nepal
R. Ko
FedML
23
2
0
27 Apr 2021
Discriminative Bayesian filtering lends momentum to the stochastic Newton method for minimizing log-convex functions
Michael C. Burkhart
14
0
0
27 Apr 2021
Semi-Decentralized Federated Edge Learning for Fast Convergence on Non-IID Data
Yuchang Sun
Jiawei Shao
Yuyi Mao
Jessie Hui Wang
Jun Zhang
FedML
46
39
0
26 Apr 2021
Solving a class of non-convex min-max games using adaptive momentum methods
Babak Barazandeh
Davoud Ataee Tarzanagh
George Michailidis
37
13
0
26 Apr 2021
Improved Analysis and Rates for Variance Reduction under Without-replacement Sampling Orders
Xinmeng Huang
Kun Yuan
Xianghui Mao
W. Yin
35
12
0
25 Apr 2021
Random Reshuffling with Variance Reduction: New Analysis and Better Rates
Grigory Malinovsky
Alibek Sailanbayev
Peter Richtárik
28
20
0
19 Apr 2021
The mixed deep energy method for resolving concentration features in finite strain hyperelasticity
J. Fuhg
N. Bouklas
PINN
AI4CE
38
90
0
15 Apr 2021
Sample-based and Feature-based Federated Learning for Unconstrained and Constrained Nonconvex Optimization via Mini-batch SSCA
Ying Cui
Yangchen Li
Chencheng Ye
FedML
19
7
0
13 Apr 2021
Distributed Learning Systems with First-order Methods
Ji Liu
Ce Zhang
16
44
0
12 Apr 2021
SGD Implicitly Regularizes Generalization Error
Daniel A. Roberts
MLT
8
14
0
10 Apr 2021
Joint Optimization of Communications and Federated Learning Over the Air
Xin-Yue Fan
Yue Wang
Yan Huo
Z. Tian
FedML
14
54
0
08 Apr 2021
Quasi-Newton Quasi-Monte Carlo for variational Bayes
Sifan Liu
Art B. Owen
BDL
17
5
0
07 Apr 2021
Previous
1
2
3
...
14
15
16
...
27
28
29
Next