Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1601.00670
Cited By
v1
v2
v3
v4
v5
v6
v7
v8
v9 (latest)
Variational Inference: A Review for Statisticians
4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Variational Inference: A Review for Statisticians"
50 / 1,838 papers shown
Title
Deep Bayesian Active Learning for Multiple Correct Outputs
Khaled Jedoui
Ranjay Krishna
Michael S. Bernstein
Li Fei-Fei
BDL
OOD
UQCV
93
14
0
02 Dec 2019
A probabilistic assessment of the Indo-Aryan Inner-Outer Hypothesis
C. Cathcart
56
15
0
29 Nov 2019
Label Dependent Deep Variational Paraphrase Generation
Siamak Shakeri
A. Sethy
BDL
DRL
15
6
0
27 Nov 2019
Neural Latent Space Model for Dynamic Networks and Temporal Knowledge Graphs
Tony Gracious
Shubham Gupta
Arun Kanthali
Rui M. Castro
Ambedkar Dukkipati
BDL
120
0
0
26 Nov 2019
Representation Learning: A Statistical Perspective
Jianwen Xie
Ruiqi Gao
Erik Nijkamp
Song-Chun Zhu
Ying Nian Wu
SSL
49
12
0
26 Nov 2019
Scaling active inference
Alexander Tschantz
Manuel Baltieri
A. Seth
Christopher L. Buckley
BDL
AI4CE
73
69
0
24 Nov 2019
A Fully Natural Gradient Scheme for Improving Inference of the Heterogeneous Multi-Output Gaussian Process Model
Juan J. Giraldo
Mauricio A. Alvarez
BDL
119
5
0
22 Nov 2019
Modeling emotion in complex stories: the Stanford Emotional Narratives Dataset
Desmond C. Ong
Zhengxuan Wu
Zhi-Xuan Tan
Marianne C. Reddan
Isabella Kahhale
Alison Mattek
Jamil Zaki
AI4TS
67
59
0
22 Nov 2019
Estimating uncertainty of earthquake rupture using Bayesian neural network
S. Ahamed
Md Mesbah Uddin
33
5
0
21 Nov 2019
Assessment and adjustment of approximate inference algorithms using the law of total variance
Xue Yu
David J. Nott
Minh-Ngoc Tran
Nadja Klein
65
15
0
20 Nov 2019
Fuzzy Tiling Activations: A Simple Approach to Learning Sparse Representations Online
Yangchen Pan
Kirby Banman
Martha White
42
0
0
19 Nov 2019
Implicit Generative Modeling for Efficient Exploration
Neale Ratzlaff
Qinxun Bai
Fuxin Li
Wenyuan Xu
70
12
0
19 Nov 2019
Scalable and Accurate Variational Bayes for High-Dimensional Binary Regression Models
A. Fasano
Daniele Durante
Giacomo Zanella
99
32
0
15 Nov 2019
Equipping SBMs with RBMs: An Explainable Approach for Analysis of Networks with Covariates
Shubham Gupta
Gururaj K.
Ambedkar Dukkipati
Rui M. Castro
32
1
0
11 Nov 2019
Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse
James Lucas
George Tucker
Roger C. Grosse
Mohammad Norouzi
CoGe
DRL
92
180
0
06 Nov 2019
An Information Theory Approach on Deciding Spectroscopic Follow Ups
Javiera Astudillo
P. Protopapas
K. Pichara
P. Huijse
32
4
0
06 Nov 2019
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
45
14
0
05 Nov 2019
A Latent Topic Model with Markovian Transition for Process Data
Haochen Xu
Guanhua Fang
Z. Ying
31
7
0
05 Nov 2019
Statistical Inference in Mean-Field Variational Bayes
Wei Han
Yun Yang
48
18
0
04 Nov 2019
Mean-field inference methods for neural networks
Marylou Gabrié
AI4CE
127
33
0
03 Nov 2019
Variational Bayesian inference of hidden stochastic processes with unknown parameters
Komlan Atitey
P. Loskot
Lyudmila Mihaylova
30
0
0
02 Nov 2019
Learning Hawkes Processes from a Handful of Events
Farnood Salehi
W. Trouleau
Matthias Grossglauser
Patrick Thiran
BDL
CML
131
37
0
01 Nov 2019
Energy-Inspired Models: Learning with Sampler-Induced Distributions
Dieterich Lawson
George Tucker
Bo Dai
Rajesh Ranganath
92
31
0
31 Oct 2019
Thompson Sampling via Local Uncertainty
Zhendong Wang
Mingyuan Zhou
80
19
0
30 Oct 2019
Spectral Subsampling MCMC for Stationary Time Series
R. Salomone
M. Quiroz
Robert Kohn
M. Villani
Minh-Ngoc Tran
AI4TS
78
15
0
30 Oct 2019
Neural Density Estimation and Likelihood-free Inference
George Papamakarios
BDL
DRL
100
47
0
29 Oct 2019
Semi-Implicit Stochastic Recurrent Neural Networks
Ehsan Hajiramezanali
Arman Hasanzadeh
N. Duffield
Krishna R. Narayanan
Mingyuan Zhou
Xiaoning Qian
BDL
58
5
0
28 Oct 2019
Stein Variational Gradient Descent With Matrix-Valued Kernels
Dilin Wang
Ziyang Tang
Minh Nguyen
Qiang Liu
90
62
0
28 Oct 2019
On the Global Convergence of (Fast) Incremental Expectation Maximization Methods
Belhal Karimi
Hoi-To Wai
Eric Moulines
M. Lavielle
74
28
0
28 Oct 2019
A Recurrent Variational Autoencoder for Speech Enhancement
Simon Leglaive
Xavier Alameda-Pineda
Laurent Girin
Radu Horaud
DRL
147
80
0
24 Oct 2019
Optimistic Distributionally Robust Optimization for Nonparametric Likelihood Approximation
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
Man-Chung Yue
Daniel Kuhn
W. Wiesemann
69
29
0
23 Oct 2019
Collapsed Amortized Variational Inference for Switching Nonlinear Dynamical Systems
Zhe Dong
Bryan Seybold
Kevin Patrick Murphy
Hung Bui
BDL
86
32
0
21 Oct 2019
Maximum Probability Theorem: A Framework for Probabilistic Learning
Amir Emad Marvasti
Ehsan Emad Marvasti
Ulas Bagci
H. Foroosh
31
1
0
21 Oct 2019
Scaling up Psychology via Scientific Regret Minimization: A Case Study in Moral Decisions
Mayank Agrawal
Joshua C. Peterson
Thomas Griffiths
35
1
0
16 Oct 2019
The Renyi Gaussian Process: Towards Improved Generalization
Xubo Yue
Raed Al Kontar
140
3
0
15 Oct 2019
Challenges in Markov chain Monte Carlo for Bayesian neural networks
Theodore Papamarkou
Jacob D. Hinkle
M. T. Young
D. Womble
BDL
131
51
0
15 Oct 2019
Introducing an Explicit Symplectic Integration Scheme for Riemannian Manifold Hamiltonian Monte Carlo
Adam D. Cobb
A. G. Baydin
Andrew Markham
Stephen J. Roberts
62
32
0
14 Oct 2019
Deep Kernels with Probabilistic Embeddings for Small-Data Learning
Ankur Mallick
Chaitanya Dwivedi
B. Kailkhura
Gauri Joshi
T. Y. Han
BDL
UQCV
51
8
0
13 Oct 2019
Prescribed Generative Adversarial Networks
Adji Bousso Dieng
Francisco J. R. Ruiz
David M. Blei
Michalis K. Titsias
GAN
DRL
80
62
0
09 Oct 2019
Validated Variational Inference via Practical Posterior Error Bounds
Jonathan H. Huggins
Mikolaj Kasprzak
Trevor Campbell
Tamara Broderick
90
37
0
09 Oct 2019
Stochastic triangular mesh mapping: A terrain mapping technique for autonomous mobile robots
C. Dufauret Lombard
C. E. V. Daalen
3DV
115
5
0
08 Oct 2019
Streamlined Variational Inference for Linear Mixed Models with Crossed Random Effects
M. Menictas
Gioia Di Credico
M. Wand
119
11
0
04 Oct 2019
CWAE-IRL: Formulating a supervised approach to Inverse Reinforcement Learning problem
Arpan Kusari
BDL
22
0
0
02 Oct 2019
The Neural Moving Average Model for Scalable Variational Inference of State Space Models
Tom Ryder
D. Prangle
Andrew Golightly
Isaac Matthews
BDL
AI4TS
92
6
0
02 Oct 2019
Action Anticipation for Collaborative Environments: The Impact of Contextual Information and Uncertainty-Based Prediction
Clebeson Canuto dos Santos
Plinio Moreno
J. L. A. Samatelo
R. Vassallo
J. Santos-Victor
68
7
0
01 Oct 2019
Tightening Bounds for Variational Inference by Revisiting Perturbation Theory
Robert Bamler
Cheng Zhang
Manfred Opper
Stephan Mandt
48
3
0
30 Sep 2019
Improving Textual Network Learning with Variational Homophilic Embeddings
Wenlin Wang
Chenyang Tao
Zhe Gan
Guoyin Wang
Liqun Chen
Xinyuan Zhang
Ruiyi Zhang
Qian Yang
Ricardo Henao
Lawrence Carin
DRL
39
16
0
30 Sep 2019
The
f
f
f
-Divergence Expectation Iteration Scheme
Kamélia Daudel
Randal Douc
Franccois Portier
François Roueff
97
1
0
26 Sep 2019
Active inference: demystified and compared
Noor Sajid
Philip J. Ball
Thomas Parr
Karl J. Friston
OffRL
41
3
0
24 Sep 2019
A Theory of Uncertainty Variables for State Estimation and Inference
Rajat Talak
S. Karaman
E. Modiano
52
1
0
24 Sep 2019
Previous
1
2
3
...
28
29
30
...
35
36
37
Next