Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1601.00670
Cited By
v1
v2
v3
v4
v5
v6
v7
v8
v9 (latest)
Variational Inference: A Review for Statisticians
4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Variational Inference: A Review for Statisticians"
50 / 1,838 papers shown
Title
Knot Selection in Sparse Gaussian Processes with a Variational Objective Function
Nathaniel Garton
Jarad Niemi
A. Carriquiry
40
2
0
05 Mar 2020
mmFall: Fall Detection using 4D MmWave Radar and a Hybrid Variational RNN AutoEncoder
Feng Jin
Arindam Sengupta
Siyang Cao
DRL
34
2
0
05 Mar 2020
Variational inference formulation for a model-free simulation of a dynamical system with unknown parameters by a recurrent neural network
K. Yeo
D. E. C. Grullon
Fan-Keng Sun
Duane S. Boning
Jayant Kalagnanam
BDL
57
3
0
02 Mar 2020
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
109
95
0
02 Mar 2020
Bayesian Neural Networks With Maximum Mean Discrepancy Regularization
Jary Pomponi
Simone Scardapane
A. Uncini
UQCV
BDL
83
20
0
02 Mar 2020
MetFlow: A New Efficient Method for Bridging the Gap between Markov Chain Monte Carlo and Variational Inference
Achille Thin
Nikita Kotelevskii
Jean-Stanislas Denain
Léo Grinsztajn
Alain Durmus
Maxim Panov
Eric Moulines
BDL
55
17
0
27 Feb 2020
Gradient Boosted Normalizing Flows
Robert Giaquinto
A. Banerjee
BDL
DRL
31
1
0
27 Feb 2020
Composing Normalizing Flows for Inverse Problems
Jay Whang
Erik M. Lindgren
A. Dimakis
TPM
116
51
0
26 Feb 2020
Hierarchical clustering with discrete latent variable models and the integrated classification likelihood
E. Côme
Nicolas Jouvin
Pierre Latouche
C. Bouveyron
47
19
0
26 Feb 2020
Automated Augmented Conjugate Inference for Non-conjugate Gaussian Process Models
Théo Galy-Fajou
F. Wenzel
Manfred Opper
60
4
0
26 Feb 2020
Lipschitz standardization for multivariate learning
Adrián Javaloy
Isabel Valera
31
0
0
26 Feb 2020
Leveraging Cross Feedback of User and Item Embeddings with Attention for Variational Autoencoder based Collaborative Filtering
Yuan Jin
He Zhao
Ming Liu
Ye Zhu
Lan Du
Longxiang Gao
He Zhang
Wray Buntine
187
0
0
21 Feb 2020
Stein Self-Repulsive Dynamics: Benefits From Past Samples
Mao Ye
Zhaolin Ren
Qiang Liu
61
8
0
21 Feb 2020
Weakly-supervised Multi-output Regression via Correlated Gaussian Processes
Seokhyun Chung
Raed Al Kontar
Zhenke Wu
39
5
0
19 Feb 2020
Gaussian Mixture Reduction with Composite Transportation Divergence
Qiong Zhang
Archer Gong Zhang
Jiahua Chen
56
4
0
19 Feb 2020
Variational Bayesian Quantization
Yibo Yang
Robert Bamler
Stephan Mandt
BDL
MQ
73
5
0
18 Feb 2020
Posterior Ratio Estimation of Latent Variables
Song Liu
Yulong Zhang
Mingxuan Yi
Mladen Kolar
71
2
0
15 Feb 2020
Semi-Structured Distributional Regression -- Extending Structured Additive Models by Arbitrary Deep Neural Networks and Data Modalities
David Rügamer
Chris Kolb
Nadja Klein
79
23
0
13 Feb 2020
PACOH: Bayes-Optimal Meta-Learning with PAC-Guarantees
Jonas Rothfuss
Vincent Fortuin
Martin Josifoski
Andreas Krause
UQCV
93
127
0
13 Feb 2020
Estimating Uncertainty Intervals from Collaborating Networks
Tianhui Zhou
Yitong Li
Yuan Wu
David Carlson
UQCV
177
17
0
12 Feb 2020
Learnable Bernoulli Dropout for Bayesian Deep Learning
Shahin Boluki
Randy Ardywibowo
Siamak Zamani Dadaneh
Mingyuan Zhou
Xiaoning Qian
BDL
63
34
0
12 Feb 2020
Reward-rational (implicit) choice: A unifying formalism for reward learning
Hong Jun Jeon
S. Milli
Anca Dragan
102
177
0
12 Feb 2020
Discrete Action On-Policy Learning with Action-Value Critic
Yuguang Yue
Yunhao Tang
Mingzhang Yin
Mingyuan Yin
OffRL
78
5
0
10 Feb 2020
Projected Stein Variational Gradient Descent
Peng Chen
Omar Ghattas
BDL
136
71
0
09 Feb 2020
DynamicPPL: Stan-like Speed for Dynamic Probabilistic Models
Mohamed Tarek
Kai Xu
Martin Trapp
Hong Ge
Zoubin Ghahramani
46
7
0
07 Feb 2020
The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks
J. Swiatkowski
Kevin Roth
Bastiaan S. Veeling
Linh-Tam Tran
Joshua V. Dillon
Jasper Snoek
Stephan Mandt
Tim Salimans
Rodolphe Jenatton
Sebastian Nowozin
BDL
89
47
0
07 Feb 2020
Gaussian Variational State Estimation for Nonlinear State-Space Models
Jarrad Courts
A. Wills
Thomas B. Schon
51
14
0
07 Feb 2020
Interpolating Predictors in High-Dimensional Factor Regression
F. Bunea
Seth Strimas-Mackey
M. Wegkamp
73
12
0
06 Feb 2020
Forecasting Industrial Aging Processes with Machine Learning Methods
Mihail Bogojeski
Simeon Sauer
F. Horn
K. Müller
AI4CE
40
21
0
05 Feb 2020
Variational Item Response Theory: Fast, Accurate, and Expressive
Mike Wu
R. Davis
B. Domingue
Chris Piech
Noah D. Goodman
OffRL
107
55
0
01 Feb 2020
Bayesian Reasoning with Trained Neural Networks
Jakob Knollmüller
T. Ensslin
BDL
UQCV
28
2
0
29 Jan 2020
Machine Learning in Thermodynamics: Prediction of Activity Coefficients by Matrix Completion
Fabian Jirasek
Rodrigo Alves
J. Damay
Robert A. Vandermeulen
Robert Bamler
Michael Bortz
Stephan Mandt
Marius Kloft
Hans Hasse
244
69
0
29 Jan 2020
Sparse Semi-supervised Heterogeneous Interbattery Bayesian Analysis
C. Sevilla-Salcedo
Vanessa Gómez-Verdejo
Pablo Martínez Olmos
39
11
0
24 Jan 2020
A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis
Christopher J. Urban
Daniel J. Bauer
BDL
81
33
0
22 Jan 2020
Learning the Ising Model with Generative Neural Networks
Francesco DÁngelo
Lucas Böttcher
AI4CE
57
28
0
15 Jan 2020
Unifying and generalizing models of neural dynamics during decision-making
D. Zoltowski
Jonathan W. Pillow
Scott W. Linderman
48
8
0
13 Jan 2020
CATVI: Conditional and Adaptively Truncated Variational Inference for Hierarchical Bayesian Nonparametric Models
Jones Yirui Liu
Xinghao Qiao
Jessica Lam
TPM
115
3
0
13 Jan 2020
Learning credit assignment
Chan Li
Haiping Huang
69
7
0
10 Jan 2020
Variational Bayesian Methods for Stochastically Constrained System Design Problems
Prateek Jaiswal
Harsha Honnappa
Vinayak A. Rao
32
2
0
06 Jan 2020
Inf-VAE: A Variational Autoencoder Framework to Integrate Homophily and Influence in Diffusion Prediction
Aravind Sankar
Xinyang Zhang
A. Krishnan
Jiawei Han
GNN
74
83
0
01 Jan 2020
Multilevel Monte Carlo estimation of log marginal likelihood
T. Goda
Kei Ishikawa
27
3
0
23 Dec 2019
Learning under Model Misspecification: Applications to Variational and Ensemble methods
A. Masegosa
31
1
0
18 Dec 2019
Probabilistic Software Modeling: A Data-driven Paradigm for Software Analysis
Hannes Thaller
L. Linsbauer
Rudolf Ramler
Alexander Egyed
125
4
0
17 Dec 2019
Testing Homogeneity for Normal Mixture Models: Variational Bayes Approach
Natsuki Kariya
Sumio Watanabe
26
1
0
15 Dec 2019
Parameter-Conditioned Sequential Generative Modeling of Fluid Flows
Jeremy Morton
F. Witherden
Mykel J. Kochenderfer
GAN
MedIm
AI4CE
61
10
0
14 Dec 2019
Bayesian Variational Autoencoders for Unsupervised Out-of-Distribution Detection
Erik A. Daxberger
José Miguel Hernández-Lobato
UQCV
103
63
0
11 Dec 2019
Bayesian Structure Adaptation for Continual Learning
Abhishek Kumar
Sunabha Chatterjee
Piyush Rai
CLL
BDL
64
30
0
08 Dec 2019
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
219
1,724
0
05 Dec 2019
Solving Bayesian Inverse Problems via Variational Autoencoders
Hwan Goh
Sheroze Sheriffdeen
J. Wittmer
T. Bui-Thanh
BDL
147
39
0
05 Dec 2019
Neighborhood Cognition Consistent Multi-Agent Reinforcement Learning
Hangyu Mao
Wulong Liu
Jianye Hao
Jun Luo
Dong Li
Zhengchao Zhang
Jun Wang
Zhen Xiao
OffRL
83
77
0
03 Dec 2019
Previous
1
2
3
...
27
28
29
...
35
36
37
Next