ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.00670
  4. Cited By
Variational Inference: A Review for Statisticians
v1v2v3v4v5v6v7v8v9 (latest)

Variational Inference: A Review for Statisticians

4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
    BDL
ArXiv (abs)PDFHTML

Papers citing "Variational Inference: A Review for Statisticians"

50 / 1,838 papers shown
Title
Robust Bayesian Learning for Reliable Wireless AI: Framework and
  Applications
Robust Bayesian Learning for Reliable Wireless AI: Framework and Applications
Matteo Zecchin
Sangwoo Park
Osvaldo Simeone
Marios Kountouris
David Gesbert
85
15
0
01 Jul 2022
Variational Inference for Additive Main and Multiplicative Interaction
  Effects Models
Variational Inference for Additive Main and Multiplicative Interaction Effects Models
A. A. L. D. Santos
R. Moral
Danilo A. Sarti
Andrew C. Parnell
52
2
0
29 Jun 2022
Strong Lensing Source Reconstruction Using Continuous Neural Fields
Strong Lensing Source Reconstruction Using Continuous Neural Fields
S. Mishra-Sharma
Ge Yang
135
13
0
29 Jun 2022
Can Push-forward Generative Models Fit Multimodal Distributions?
Can Push-forward Generative Models Fit Multimodal Distributions?
Antoine Salmona
Valentin De Bortoli
J. Delon
A. Desolneux
DiffM
90
39
0
29 Jun 2022
Bayesian Multi-task Variable Selection with an Application to
  Differential DAG Analysis
Bayesian Multi-task Variable Selection with an Application to Differential DAG Analysis
Guanxun Li
Quan Zhou
65
1
0
28 Jun 2022
Reconstructing the Universe with Variational self-Boosted Sampling
Reconstructing the Universe with Variational self-Boosted Sampling
Chirag Modi
Yin Li
David M. Blei
38
9
0
28 Jun 2022
The split Gibbs sampler revisited: improvements to its algorithmic
  structure and augmented target distribution
The split Gibbs sampler revisited: improvements to its algorithmic structure and augmented target distribution
Marcelo Pereyra
L. Mieles
K. Zygalakis
119
7
0
28 Jun 2022
Quantification of Deep Neural Network Prediction Uncertainties for VVUQ
  of Machine Learning Models
Quantification of Deep Neural Network Prediction Uncertainties for VVUQ of Machine Learning Models
M. Yaseen
Xu Wu
AI4CE
68
15
0
27 Jun 2022
Self-supervised Learning in Remote Sensing: A Review
Self-supervised Learning in Remote Sensing: A Review
Yi Wang
C. Albrecht
Nassim Ait Ali Braham
Lichao Mou
Xiao Xiang Zhu
165
229
0
27 Jun 2022
A generalised form for a homogeneous population of structures using an
  overlapping mixture of Gaussian processes
A generalised form for a homogeneous population of structures using an overlapping mixture of Gaussian processes
T. Dardeno
L. Bull
N. Dervilis
Keith Worden
130
0
0
23 Jun 2022
How to Combine Variational Bayesian Networks in Federated Learning
How to Combine Variational Bayesian Networks in Federated Learning
Atahan Ozer
Kadir Burak Buldu
Abdullah Akgul
Gözde B. Ünal
FedML
95
6
0
22 Jun 2022
Bayesian non-conjugate regression via variational message passing
Bayesian non-conjugate regression via variational message passing
C. Castiglione
M. Bernardi
55
0
0
19 Jun 2022
Spherical Sliced-Wasserstein
Spherical Sliced-Wasserstein
Clément Bonet
P. Berg
Nicolas Courty
Françcois Septier
Lucas Drumetz
Minh Pham
95
27
0
17 Jun 2022
Bayesian conjugacy in probit, tobit, multinomial probit and extensions:
  A review and new results
Bayesian conjugacy in probit, tobit, multinomial probit and extensions: A review and new results
Niccolò Anceschi
A. Fasano
Daniele Durante
Giacomo Zanella
87
18
0
16 Jun 2022
Personalized Federated Learning via Variational Bayesian Inference
Personalized Federated Learning via Variational Bayesian Inference
Xu Zhang
Yinchuan Li
Wenpeng Li
Kaiyang Guo
Yunfeng Shao
FedML
102
91
0
16 Jun 2022
Bayesian Learning of Parameterised Quantum Circuits
Bayesian Learning of Parameterised Quantum Circuits
Samuel Duffield
Marcello Benedetti
Matthias Rosenkranz
60
11
0
15 Jun 2022
Markov Chain Score Ascent: A Unifying Framework of Variational Inference
  with Markovian Gradients
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
Kyurae Kim
Jisu Oh
Jacob R. Gardner
Adji Bousso Dieng
Hongseok Kim
BDL
95
8
0
13 Jun 2022
SIXO: Smoothing Inference with Twisted Objectives
SIXO: Smoothing Inference with Twisted Objectives
Dieterich Lawson
Allan Raventós
Andrew Warrington
Scott W. Linderman
BDL
269
15
0
13 Jun 2022
Variational Bayes Deep Operator Network: A data-driven Bayesian solver
  for parametric differential equations
Variational Bayes Deep Operator Network: A data-driven Bayesian solver for parametric differential equations
Shailesh Garg
S. Chakraborty
118
6
0
12 Jun 2022
Density Regression and Uncertainty Quantification with Bayesian Deep
  Noise Neural Networks
Density Regression and Uncertainty Quantification with Bayesian Deep Noise Neural Networks
Daiwei Zhang
Tianci Liu
Jian Kang
BDLUQCV
73
3
0
12 Jun 2022
Causal Balancing for Domain Generalization
Causal Balancing for Domain Generalization
Xinyi Wang
Michael Stephen Saxon
Jiachen Li
Hongyang R. Zhang
Kun Zhang
William Yang Wang
OODCML
115
23
0
10 Jun 2022
ROI-Constrained Bidding via Curriculum-Guided Bayesian Reinforcement
  Learning
ROI-Constrained Bidding via Curriculum-Guided Bayesian Reinforcement Learning
Haozhe Jasper Wang
Chao Du
Panyan Fang
Shuo Yuan
Xu-Jiang He
Liang Wang
Bo Zheng
128
12
0
10 Jun 2022
PAVI: Plate-Amortized Variational Inference
PAVI: Plate-Amortized Variational Inference
Louis Rouillard
Thomas Moreau
Demian Wassermann
46
1
0
10 Jun 2022
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
Ryan Lopez
P. Atzberger
AI4CE
119
8
0
10 Jun 2022
Probability flow solution of the Fokker-Planck equation
Probability flow solution of the Fokker-Planck equation
Nicholas M. Boffi
Eric Vanden-Eijnden
120
47
0
09 Jun 2022
Joint Modeling of Image and Label Statistics for Enhancing Model
  Generalizability of Medical Image Segmentation
Joint Modeling of Image and Label Statistics for Enhancing Model Generalizability of Medical Image Segmentation
Yuxin Li
Hang Zhou
Yibo Gao
Xiahai Zhuang
BDL
39
4
0
09 Jun 2022
Model Selection in Variational Mixed Effects Models
Model Selection in Variational Mixed Effects Models
M. Meyer
Selina Carter
E. Malloy
25
0
0
08 Jun 2022
Decomposed Linear Dynamical Systems (dLDS) for learning the latent
  components of neural dynamics
Decomposed Linear Dynamical Systems (dLDS) for learning the latent components of neural dynamics
Noga Mudrik
Yenho Chen
Eva Yezerets
Christopher Rozell
Adam S. Charles
103
16
0
07 Jun 2022
Neural network model for imprecise regression with interval dependent
  variables
Neural network model for imprecise regression with interval dependent variables
K. Tretiak
G. Schollmeyer
S. Ferson
67
14
0
06 Jun 2022
Tackling covariate shift with node-based Bayesian neural networks
Tackling covariate shift with node-based Bayesian neural networks
Trung Trinh
Markus Heinonen
Luigi Acerbi
Samuel Kaski
BDLUQCV
70
6
0
06 Jun 2022
Diffusion-GAN: Training GANs with Diffusion
Diffusion-GAN: Training GANs with Diffusion
Zhendong Wang
Huangjie Zheng
Pengcheng He
Weizhu Chen
Mingyuan Zhou
DiffM
92
235
0
05 Jun 2022
Factored Conditional Filtering: Tracking States and Estimating
  Parameters in High-Dimensional Spaces
Factored Conditional Filtering: Tracking States and Estimating Parameters in High-Dimensional Spaces
Dawei Chen
Samuel Yang-Zhao
John Lloyd
K. S. Ng
AI4TS
50
1
0
05 Jun 2022
BaCaDI: Bayesian Causal Discovery with Unknown Interventions
BaCaDI: Bayesian Causal Discovery with Unknown Interventions
Alexander Hagele
Jonas Rothfuss
Lars Lorch
Vignesh Ram Somnath
Bernhard Schölkopf
Andreas Krause
CMLBDL
123
22
0
03 Jun 2022
Masked Bayesian Neural Networks : Computation and Optimality
Insung Kong
Dongyoon Yang
Jongjin Lee
Ilsang Ohn
Yongdai Kim
TPM
53
1
0
02 Jun 2022
Progressive Purification for Instance-Dependent Partial Label Learning
Progressive Purification for Instance-Dependent Partial Label Learning
Ning Xu
Biao Liu
Jiaqi Lv
Congyu Qiao
Xin Geng
99
19
0
02 Jun 2022
Bayesian Inference for the Multinomial Probit Model under Gaussian Prior
  Distribution
Bayesian Inference for the Multinomial Probit Model under Gaussian Prior Distribution
A. Fasano
Giovanni Rebaudo
Niccolò Anceschi
195
1
0
01 Jun 2022
Easy Variational Inference for Categorical Models via an Independent
  Binary Approximation
Easy Variational Inference for Categorical Models via an Independent Binary Approximation
M. Wojnowicz
Shuchin Aeron
Eric L. Miller
M. C. Hughes
68
2
0
31 May 2022
Variational inference via Wasserstein gradient flows
Variational inference via Wasserstein gradient flows
Marc Lambert
Sinho Chewi
Francis R. Bach
Silvère Bonnabel
Philippe Rigollet
BDLDRL
106
77
0
31 May 2022
Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian
  Inference
Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian Inference
R. Grumitt
B. Dai
U. Seljak
BDL
114
13
0
27 May 2022
EvoVGM: a Deep Variational Generative Model for Evolutionary Parameter
  Estimation
EvoVGM: a Deep Variational Generative Model for Evolutionary Parameter Estimation
Amine M. Remita
Abdoulaye Baniré Diallo
BDL
38
0
0
25 May 2022
Amortized Inference for Causal Structure Learning
Amortized Inference for Causal Structure Learning
Lars Lorch
Scott Sussex
Jonas Rothfuss
Andreas Krause
Bernhard Schölkopf
CML
118
65
0
25 May 2022
Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs
Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs
Çağatay Yıldız
M. Kandemir
Barbara Rakitsch
135
12
0
24 May 2022
Generalization Gap in Amortized Inference
Generalization Gap in Amortized Inference
Mingtian Zhang
Peter Hayes
David Barber
BDLCMLDRL
128
14
0
23 May 2022
Quasi Black-Box Variational Inference with Natural Gradients for
  Bayesian Learning
Quasi Black-Box Variational Inference with Natural Gradients for Bayesian Learning
M. Magris
M. Shabani
Alexandros Iosifidis
BDL
77
4
0
23 May 2022
RL with KL penalties is better viewed as Bayesian inference
RL with KL penalties is better viewed as Bayesian inference
Tomasz Korbak
Ethan Perez
Christopher L. Buckley
OffRL
96
77
0
23 May 2022
Deep Direct Discriminative Decoders for High-dimensional Time-series
  Data Analysis
Deep Direct Discriminative Decoders for High-dimensional Time-series Data Analysis
Mohammadreza Rezaei
Milos R. Popovic
M. Lankarany
Ali Yousefi
AI4TS
143
0
0
22 May 2022
Foundation Posteriors for Approximate Probabilistic Inference
Foundation Posteriors for Approximate Probabilistic Inference
Mike Wu
Noah D. Goodman
UQCV
94
6
0
19 May 2022
Variational Inference for Bayesian Bridge Regression
Variational Inference for Bayesian Bridge Regression
C. P. Zanini
H. Migon
Ronaldo Dias
29
0
0
19 May 2022
MixFlows: principled variational inference via mixed flows
MixFlows: principled variational inference via mixed flows
Zuheng Xu
Na Chen
Trevor Campbell
142
9
0
16 May 2022
Fast Conditional Network Compression Using Bayesian HyperNetworks
Fast Conditional Network Compression Using Bayesian HyperNetworks
Phuoc Nguyen
T. Tran
Ky Le
Sunil R. Gupta
Santu Rana
Dang Nguyen
Trong Nguyen
S. Ryan
Svetha Venkatesh
BDL
54
7
0
13 May 2022
Previous
123...151617...353637
Next