ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.00670
  4. Cited By
Variational Inference: A Review for Statisticians
v1v2v3v4v5v6v7v8v9 (latest)

Variational Inference: A Review for Statisticians

4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
    BDL
ArXiv (abs)PDFHTML

Papers citing "Variational Inference: A Review for Statisticians"

50 / 1,838 papers shown
Title
Learning Bilinear Models of Actuated Koopman Generators from
  Partially-Observed Trajectories
Learning Bilinear Models of Actuated Koopman Generators from Partially-Observed Trajectories
Samuel E. Otto
Sebastian Peitz
C. Rowley
84
19
0
20 Sep 2022
Knowledge-Aware Bayesian Deep Topic Model
Knowledge-Aware Bayesian Deep Topic Model
Dongsheng Wang
Yishi Xu
Miaoge Li
Zhibin Duan
Chaojie Wang
Bo Chen
Mingyuan Zhou
BDL
101
16
0
20 Sep 2022
Bit Allocation using Optimization
Bit Allocation using Optimization
Tongda Xu
Han-yi Gao
Chenjian Gao
Yuanyuan Wang
Dailan He
...
Mao Ye
Hongwei Qin
Yan Wang
Jingjing Liu
Ya-Qin Zhang
108
16
0
20 Sep 2022
Sparse high-dimensional linear regression with a partitioned empirical
  Bayes ECM algorithm
Sparse high-dimensional linear regression with a partitioned empirical Bayes ECM algorithm
Alexander C. McLain
A. Zgodic
H. Bondell
106
2
0
16 Sep 2022
Borch: A Deep Universal Probabilistic Programming Language
Borch: A Deep Universal Probabilistic Programming Language
Lewis Belcher
Johan Gudmundsson
Michael Green
BDLAI4CEUQCV
55
0
0
13 Sep 2022
A Gaussian variational inference approach to motion planning
A Gaussian variational inference approach to motion planning
Hongzhe Yu
Yongxin Chen
75
18
0
13 Sep 2022
Uncovering Regions of Maximum Dissimilarity on Random Process Data
Uncovering Regions of Maximum Dissimilarity on Random Process Data
M. Carvalho
G. Venturini
19
0
0
12 Sep 2022
Variational Autoencoder Kernel Interpretation and Selection for
  Classification
Variational Autoencoder Kernel Interpretation and Selection for Classification
Fábio Mendonça
S. Mostafa
F. M. Dias
A. Ravelo-García
DRL
48
0
0
10 Sep 2022
A Variational Approach to Parameter Estimation for Characterizing 2-D
  Cluster Variation Method Topographies
A Variational Approach to Parameter Estimation for Characterizing 2-D Cluster Variation Method Topographies
A. Maren
48
0
0
09 Sep 2022
Bayesian learning of feature spaces for multitasks problems
Bayesian learning of feature spaces for multitasks problems
C. Sevilla-Salcedo
Ascensión Gallardo-Antolín
Vanessa Gómez-Verdejo
Emilio Parrado-Hernández
35
1
0
07 Sep 2022
Bayesian Neural Network Inference via Implicit Models and the Posterior
  Predictive Distribution
Bayesian Neural Network Inference via Implicit Models and the Posterior Predictive Distribution
J. Dabrowski
D. Pagendam
UQCVBDL
54
0
0
06 Sep 2022
ProBoost: a Boosting Method for Probabilistic Classifiers
ProBoost: a Boosting Method for Probabilistic Classifiers
Fábio Mendonça
S. Mostafa
F. Morgado‐Dias
A. Ravelo-García
Mário A. T. Figueiredo
UQCV
34
0
0
04 Sep 2022
A taxonomy of surprise definitions
A taxonomy of surprise definitions
Alireza Modirshanechi
Johanni Brea
W. Gerstner
31
32
0
02 Sep 2022
Learning Multiscale Non-stationary Causal Structures
Learning Multiscale Non-stationary Causal Structures
Gabriele DÁcunto
G. D. F. Morales
P. Bajardi
Francesco Bonchi
CMLAI4TS
60
4
0
31 Aug 2022
Image Reconstruction by Splitting Expectation Propagation Techniques
  from Iterative Inversion
Image Reconstruction by Splitting Expectation Propagation Techniques from Iterative Inversion
R. Aykroyd
Kehinde Olobatuyi
23
0
0
25 Aug 2022
A flexible empirical Bayes approach to multiple linear regression and
  connections with penalized regression
A flexible empirical Bayes approach to multiple linear regression and connections with penalized regression
Youngseok Kim
Wei Wang
P. Carbonetto
M. Stephens
66
16
0
23 Aug 2022
A Graphical Model for Fusing Diverse Microbiome Data
A Graphical Model for Fusing Diverse Microbiome Data
Mehmet Aktukmak
Haonan Zhu
M. Chevrette
Julia Nepper
S. Magesh
J. Handelsman
Alfred Hero
54
2
0
21 Aug 2022
SimLDA: A tool for topic model evaluation
SimLDA: A tool for topic model evaluation
Rebecca M. C. Taylor
J. D. Preez
112
0
0
19 Aug 2022
Uncertainty-guided Source-free Domain Adaptation
Uncertainty-guided Source-free Domain Adaptation
Subhankar Roy
Martin Trapp
Andrea Pilzer
Arno Solin
N. Sebe
Elisa Ricci
Arno Solin
EDLTTAUQLMUQCV
135
68
0
16 Aug 2022
Virgo: Scalable Unsupervised Classification of Cosmological Shock Waves
Virgo: Scalable Unsupervised Classification of Cosmological Shock Waves
Max Lamparth
Ludwig M. Böss
U. Steinwandel
K. Dolag
35
0
0
14 Aug 2022
Diffusion Policies as an Expressive Policy Class for Offline
  Reinforcement Learning
Diffusion Policies as an Expressive Policy Class for Offline Reinforcement Learning
Zhendong Wang
Jonathan J. Hunt
Mingyuan Zhou
OffRL
141
391
0
12 Aug 2022
Gradient Estimation for Binary Latent Variables via Gradient Variance
  Clipping
Gradient Estimation for Binary Latent Variables via Gradient Variance Clipping
Russell Z. Kunes
Mingzhang Yin
Max Land
Doron Haviv
Dana Peér
Simon Tavaré
BDL
89
3
0
12 Aug 2022
Variational Autoencoders for Anomaly Detection in Respiratory Sounds
Variational Autoencoders for Anomaly Detection in Respiratory Sounds
Michele Cozzatti
Federico Simonetta
Stavros Ntalampiras
DRL
53
4
0
05 Aug 2022
A Case-Study of Sample-Based Bayesian Forecasting Algorithms
A Case-Study of Sample-Based Bayesian Forecasting Algorithms
Taylor R. Brown
AI4TS
20
0
0
05 Aug 2022
Computing Bayes: From Then 'Til Now'
Computing Bayes: From Then 'Til Now'
G. Martin
David T. Frazier
Christian P. Robert
106
16
0
01 Aug 2022
Reconstructing Sparse Multiplex Networks with Application to Covert
  Networks
Reconstructing Sparse Multiplex Networks with Application to Covert Networks
Jin-Zhu Yu
Mincheng Wu
Gisela Bichler
Felipe Aros-Vera
Jianxi Gao
61
1
0
29 Jul 2022
A Survey of Learning on Small Data: Generalization, Optimization, and
  Challenge
A Survey of Learning on Small Data: Generalization, Optimization, and Challenge
Xiaofeng Cao
Weixin Bu
Sheng-Jun Huang
Minling Zhang
Ivor W. Tsang
Yew-Soon Ong
James T. Kwok
99
1
0
29 Jul 2022
One Simple Trick to Fix Your Bayesian Neural Network
One Simple Trick to Fix Your Bayesian Neural Network
Piotr Tempczyk
Ksawery Smoczyñski
Philip Smolenski-Jensen
Marek Cygan
BDLMLT
26
0
0
26 Jul 2022
Reliable amortized variational inference with physics-based latent
  distribution correction
Reliable amortized variational inference with physics-based latent distribution correction
Ali Siahkoohi
G. Rizzuti
Rafael Orozco
Felix J. Herrmann
83
29
0
24 Jul 2022
Statistical and Computational Trade-offs in Variational Inference: A
  Case Study in Inferential Model Selection
Statistical and Computational Trade-offs in Variational Inference: A Case Study in Inferential Model Selection
Kush S. Bhatia
Nikki Lijing Kuang
Yi-An Ma
Yixin Wang
69
7
0
22 Jul 2022
Correcting Model Bias with Sparse Implicit Processes
Correcting Model Bias with Sparse Implicit Processes
Simón Rodríguez Santana
Luis A. Ortega Andrés
Daniel Hernández-Lobato
B. Zaldívar
BDL
51
1
0
21 Jul 2022
Illusory Attacks: Information-Theoretic Detectability Matters in
  Adversarial Attacks
Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks
Tim Franzmeyer
Stephen McAleer
João F. Henriques
Jakob N. Foerster
Philip Torr
Adel Bibi
Christian Schroeder de Witt
AAML
78
8
0
20 Jul 2022
Correntropy-Based Logistic Regression with Automatic Relevance
  Determination for Robust Sparse Brain Activity Decoding
Correntropy-Based Logistic Regression with Automatic Relevance Determination for Robust Sparse Brain Activity Decoding
Yuanhao Li
Badong Chen
Yuxi Shi
N. Yoshimura
Yasuharu Koike
48
4
0
20 Jul 2022
Multimodal hierarchical Variational AutoEncoders with Factor Analysis
  latent space
Multimodal hierarchical Variational AutoEncoders with Factor Analysis latent space
Alejandro Guerrero-López
C. Sevilla-Salcedo
Vanessa Gómez-Verdejo
Pablo Martínez Olmos
DRL
47
1
0
19 Jul 2022
Gradient-based data and parameter dimension reduction for Bayesian
  models: an information theoretic perspective
Gradient-based data and parameter dimension reduction for Bayesian models: an information theoretic perspective
Ricardo Baptista
Youssef Marzouk
O. Zahm
74
14
0
18 Jul 2022
Uncertainty Calibration in Bayesian Neural Networks via Distance-Aware
  Priors
Uncertainty Calibration in Bayesian Neural Networks via Distance-Aware Priors
Gianluca Detommaso
Alberto Gasparin
A. Wilson
Cédric Archambeau
UQCVBDL
78
3
0
17 Jul 2022
Spin glass systems as collective active inference
Spin glass systems as collective active inference
Conor Heins
Brennan Klein
Daphne Demekas
Miguel Aguilera
Christopher L. Buckley
142
16
0
14 Jul 2022
BR-SNIS: Bias Reduced Self-Normalized Importance Sampling
BR-SNIS: Bias Reduced Self-Normalized Importance Sampling
Gabriel Victorino Cardoso
S. Samsonov
Achille Thin
Eric Moulines
Jimmy Olsson
67
9
0
13 Jul 2022
The Free Energy Principle for Perception and Action: A Deep Learning
  Perspective
The Free Energy Principle for Perception and Action: A Deep Learning Perspective
Pietro Mazzaglia
Tim Verbelen
Ozan Çatal
Bart Dhoedt
DRLAI4CE
70
33
0
13 Jul 2022
Expert Elicitation and Data Noise Learning for Material Flow Analysis
  using Bayesian Inference
Expert Elicitation and Data Noise Learning for Material Flow Analysis using Bayesian Inference
Jiayuan Dong
Jiankan Liao
Xun Huan
Daniel R. Cooper
27
7
0
13 Jul 2022
Scalable Bayesian Inference for Detection and Deblending in Astronomical
  Images
Scalable Bayesian Inference for Detection and Deblending in Astronomical Images
Derek Hansen
I. Mendoza
Runjing Liu
Ziteng Pang
Zhenjun Zhao
Camille Avestruz
Jeffrey Regier
40
5
0
12 Jul 2022
Sparse Dynamic Factor Models with Loading Selection by Variational
  Inference
Sparse Dynamic Factor Models with Loading Selection by Variational Inference
Erik Spaanberg
11
0
0
11 Jul 2022
Functional Generalized Empirical Likelihood Estimation for Conditional
  Moment Restrictions
Functional Generalized Empirical Likelihood Estimation for Conditional Moment Restrictions
Heiner Kremer
Jia-Jie Zhu
Krikamol Muandet
Bernhard Schölkopf
82
8
0
11 Jul 2022
Variational Inference of overparameterized Bayesian Neural Networks: a
  theoretical and empirical study
Variational Inference of overparameterized Bayesian Neural Networks: a theoretical and empirical study
Tom Huix
Szymon Majewski
Alain Durmus
Eric Moulines
Anna Korba
BDL
52
6
0
08 Jul 2022
Harnessing Out-Of-Distribution Examples via Augmenting Content and Style
Harnessing Out-Of-Distribution Examples via Augmenting Content and Style
Zhuo Huang
Xiaobo Xia
Li Shen
Bo Han
Biwei Huang
Chen Gong
Tongliang Liu
OODD
79
47
0
07 Jul 2022
Improved conformalized quantile regression
Improved conformalized quantile regression
Martim Sousa
Ana Maria Tomé
José Manuel Moreira
145
6
0
06 Jul 2022
Variational Flow Graphical Model
Variational Flow Graphical Model
Shaogang Ren
Belhal Karimi
Dingcheng Li
Ping Li
96
4
0
06 Jul 2022
Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems
Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems
Manuela Brenner
Florian Hess
Jonas M. Mikhaeil
Leonard Bereska
Zahra Monfared
Po-Chen Kuo
Daniel Durstewitz
AI4CE
313
33
0
06 Jul 2022
Variational Inference of Dynamic Factor Models with Arbitrary Missing
  Data
Variational Inference of Dynamic Factor Models with Arbitrary Missing Data
Erik Spaanberg
10
2
0
05 Jul 2022
Variational Neural Networks
Variational Neural Networks
Illia Oleksiienko
D. Tran
Alexandros Iosifidis
BDLUQCV
67
8
0
04 Jul 2022
Previous
123...141516...353637
Next