Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1601.00670
Cited By
v1
v2
v3
v4
v5
v6
v7
v8
v9 (latest)
Variational Inference: A Review for Statisticians
4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Variational Inference: A Review for Statisticians"
50 / 1,838 papers shown
Title
NF-ULA: Langevin Monte Carlo with Normalizing Flow Prior for Imaging Inverse Problems
Ziruo Cai
Junqi Tang
Subhadip Mukherjee
Jinglai Li
Carola Bibiane Schönlieb
Xiaoqun Zhang
AI4CE
69
4
0
17 Apr 2023
Dimensionality Reduction as Probabilistic Inference
Aditya Ravuri
Francisco Vargas
V. Lalchand
Neil D. Lawrence
BDL
63
3
0
15 Apr 2023
Bayesian Inference on Brain-Computer Interfaces via GLASS
Bangyao Zhao
Jane E. Huggins
Jian Kang
24
0
0
14 Apr 2023
Black Box Variational Inference with a Deterministic Objective: Faster, More Accurate, and Even More Black Box
Ryan Giordano
Martin Ingram
Tamara Broderick
128
13
0
11 Apr 2023
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
68
29
0
10 Apr 2023
PriorCVAE: scalable MCMC parameter inference with Bayesian deep generative modelling
Elizaveta Semenova
Prakhar Verma
Max Cairney-Leeming
Arno Solin
Samir Bhatt
Seth Flaxman
BDL
84
4
0
09 Apr 2023
Bayesian neural networks via MCMC: a Python-based tutorial
Rohitash Chandra
Royce Chen
Joshua Simmons
BDL
122
11
0
02 Apr 2023
What Does the Indian Parliament Discuss? An Exploratory Analysis of the Question Hour in the Lok Sabha
Suman Adhya
Debarshi Kumar Sanyal
114
4
0
01 Apr 2023
Fast inference of latent space dynamics in huge relational event networks
I. Artico
Ernst C. Wit
BDL
101
1
0
29 Mar 2023
Your Diffusion Model is Secretly a Zero-Shot Classifier
Alexander C. Li
Mihir Prabhudesai
Shivam Duggal
Ellis L Brown
Deepak Pathak
DiffM
VLM
179
240
0
28 Mar 2023
Efficient Alternating Minimization Solvers for Wyner Multi-View Unsupervised Learning
Tengfei Huang
H. El Gamal
32
2
0
28 Mar 2023
The Wyner Variational Autoencoder for Unsupervised Multi-Layer Wireless Fingerprinting
Tengfei Huang
T. Dahanayaka
Kanchana Thilakarathna
Philip H. W. Leong
H. El Gamal
61
2
0
28 Mar 2023
GP-PCS: One-shot Feature-Preserving Point Cloud Simplification with Gaussian Processes on Riemannian Manifolds
Stuti Pathak
Thomas M. McDonald
Seppe Sels
R. Penne
3DPC
64
1
0
27 Mar 2023
Learning Generative Models with Goal-conditioned Reinforcement Learning
Mariana Vargas Vieyra
Pierre Ménard
GAN
31
0
0
26 Mar 2023
Deep Kernel Methods Learn Better: From Cards to Process Optimization
Mani Valleti
Rama K Vasudevan
M. Ziatdinov
Sergei V. Kalinin
BDL
36
9
0
25 Mar 2023
Variational Inference for Longitudinal Data Using Normalizing Flows
Clément Chadebec
S. Allassonnière
BDL
DRL
58
1
0
24 Mar 2023
Particle Mean Field Variational Bayes
Minh-Ngoc Tran
Paco Tseng
Robert Kohn
77
3
0
24 Mar 2023
Reinforcement Learning with Exogenous States and Rewards
George Trimponias
Thomas G. Dietterich
OffRL
65
2
0
22 Mar 2023
Training Invertible Neural Networks as Autoencoders
The-Gia Leo Nguyen
Lynton Ardizzone
Ullrich Kothe
BDL
DRL
SSL
69
9
0
20 Mar 2023
Convergence Analysis of Stochastic Gradient Descent with MCMC Estimators
Tian-cheng Li
Fan Chen
Huajie Chen
Zaiwen Wen
57
4
0
19 Mar 2023
Practical and Matching Gradient Variance Bounds for Black-Box Variational Bayesian Inference
Kyurae Kim
Kaiwen Wu
Jisu Oh
Jacob R. Gardner
BDL
113
8
0
18 Mar 2023
An Approximate Bayesian Approach to Covariate-dependent Graphical Modeling
Sutanoy Dasgupta
P. Zhao
Jacob Helwig
P. Ghosh
D. Pati
Bani Mallick
55
1
0
15 Mar 2023
Efficient Bayesian Physics Informed Neural Networks for Inverse Problems via Ensemble Kalman Inversion
Andrew Pensoneault
Xueyu Zhu
PINN
74
5
0
13 Mar 2023
Kernel Density Bayesian Inverse Reinforcement Learning
Aishwarya Mandyam
Didong Li
Jiayu Yao
Diana Cai
Andrew Jones
Barbara E. Engelhardt
OffRL
BDL
90
3
0
13 Mar 2023
Informative co-data learning for high-dimensional Horseshoe regression
Claudio Busatto
M. V. D. Wiel
122
2
0
10 Mar 2023
Federated Learning via Variational Bayesian Inference: Personalization, Sparsity and Clustering
Xu Zhang
Wenpeng Li
Yunfeng Shao
Yinchuan Li
FedML
89
5
0
08 Mar 2023
DR-VIDAL -- Doubly Robust Variational Information-theoretic Deep Adversarial Learning for Counterfactual Prediction and Treatment Effect Estimation on Real World Data
Shantanu Ghosh
Zheng Feng
Jiang Bian
Kevin R. B. Butler
M. Prosperi
CML
OOD
BDL
23
0
0
07 Mar 2023
Variational Inference for Neyman-Scott Processes
Chengkuan Hong
C. Shelton
BDL
57
2
0
07 Mar 2023
MFAI: A Scalable Bayesian Matrix Factorization Approach to Leveraging Auxiliary Information
Zhiwei Wang
Fa Zhang
Conghui Zheng
Xianghong Hu
Mingxuan Cai
Can Yang
43
1
0
05 Mar 2023
Lightweight, Uncertainty-Aware Conformalized Visual Odometry
Alex C. Stutts
Danilo Erricolo
Theja Tulabandhula
A. R. Trivedi
UQCV
113
11
0
03 Mar 2023
Spectral learning of Bernoulli linear dynamical systems models
Iris R. Stone
Yotam Sagiv
Il Memming Park
Jonathan W. Pillow
92
1
0
03 Mar 2023
Learning Energy Conserving Dynamics Efficiently with Hamiltonian Gaussian Processes
M. Ross
Markus Heinonen
54
2
0
03 Mar 2023
BayeSeg: Bayesian Modeling for Medical Image Segmentation with Interpretable Generalizability
Yuxin Li
Hang Zhou
Yibo Gao
Xiahai Zhuang
OOD
126
9
0
03 Mar 2023
Dimension-reduced KRnet maps for high-dimensional Bayesian inverse problems
Yani Feng
Keju Tang
Xiaoliang Wan
Qifeng Liao
58
2
0
01 Mar 2023
PixCUE: Joint Uncertainty Estimation and Image Reconstruction in MRI using Deep Pixel Classification
Mevan Ekanayake
Kamlesh Pawar
Gary Egan
Zhaolin Chen
UQCV
57
0
0
28 Feb 2023
Efficient Sensor Placement from Regression with Sparse Gaussian Processes in Continuous and Discrete Spaces
Kalvik Jakkala
Srinivas Akella
77
1
0
28 Feb 2023
Modern Bayesian Experimental Design
Tom Rainforth
Adam Foster
Desi R. Ivanova
Freddie Bickford-Smith
125
88
0
28 Feb 2023
An Approximation Theory Framework for Measure-Transport Sampling Algorithms
Ricardo Baptista
Bamdad Hosseini
Nikola B. Kovachki
Youssef M. Marzouk
A. Sagiv
OT
98
17
0
27 Feb 2023
U-Statistics for Importance-Weighted Variational Inference
Javier Burroni
Kenta Takatsu
Justin Domke
Daniel Sheldon
63
1
0
27 Feb 2023
Natural Gradient Hybrid Variational Inference with Application to Deep Mixed Models
Weiben Zhang
M. Smith
Worapree Maneesoonthorn
Rubén Loaiza-Maya
33
1
0
27 Feb 2023
A Survey on Uncertainty Quantification Methods for Deep Learning
Wenchong He
Zhe Jiang
Tingsong Xiao
Zelin Xu
Yukun Li
BDL
UQCV
AI4CE
193
24
0
26 Feb 2023
Modulated Neural ODEs
I. Auzina
Çağatay Yıldız
Sara Magliacane
Matthias Bethge
E. Gavves
81
6
0
26 Feb 2023
A Targeted Accuracy Diagnostic for Variational Approximations
Yu Wang
Mikolaj Kasprzak
Jonathan H. Huggins
DRL
69
2
0
24 Feb 2023
Streaming data recovery via Bayesian tensor train decomposition
Yunyu Huang
Yani Feng
Qifeng Liao
8
0
0
23 Feb 2023
Distributional Learning of Variational AutoEncoder: Application to Synthetic Data Generation
SeungHwan An
Jong-June Jeon
DRL
155
8
0
22 Feb 2023
VI-DGP: A variational inference method with deep generative prior for solving high-dimensional inverse problems
Yingzhi Xia
Qifeng Liao
Jinglai Li
93
4
0
22 Feb 2023
Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations and Affine Invariance
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
82
19
0
21 Feb 2023
The Shrinkage-Delinkage Trade-off: An Analysis of Factorized Gaussian Approximations for Variational Inference
C. Margossian
Lawrence K. Saul
83
8
0
17 Feb 2023
Piecewise Deterministic Markov Processes for Bayesian Neural Networks
Ethan Goan
Dimitri Perrin
Kerrie Mengersen
Clinton Fookes
71
0
0
17 Feb 2023
Conditional deep generative models as surrogates for spatial field solution reconstruction with quantified uncertainty in Structural Health Monitoring applications
Nicholas E. Silionis
Theodora Liangou
K. Anyfantis
AI4CE
133
1
0
14 Feb 2023
Previous
1
2
3
...
11
12
13
...
35
36
37
Next