ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.00670
  4. Cited By
Variational Inference: A Review for Statisticians
v1v2v3v4v5v6v7v8v9 (latest)

Variational Inference: A Review for Statisticians

4 January 2016
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
    BDL
ArXiv (abs)PDFHTML

Papers citing "Variational Inference: A Review for Statisticians"

50 / 1,838 papers shown
Title
Conditional Matrix Flows for Gaussian Graphical Models
Conditional Matrix Flows for Gaussian Graphical Models
M. Negri
F. A. Torres
Volker Roth
33
3
0
12 Jun 2023
A Neural Network Implementation for Free Energy Principle
A Neural Network Implementation for Free Energy Principle
Jingwei Liu
FedML
51
1
0
11 Jun 2023
Deep Demixing: Reconstructing the Evolution of Network Epidemics
Deep Demixing: Reconstructing the Evolution of Network Epidemics
Boning Li
Gojko Cutura
A. Swami
Santiago Segarra
56
0
0
11 Jun 2023
Additive Multi-Index Gaussian process modeling, with application to
  multi-physics surrogate modeling of the quark-gluon plasma
Additive Multi-Index Gaussian process modeling, with application to multi-physics surrogate modeling of the quark-gluon plasma
Kevin Li
Simon Mak
J. Paquet
S. Bass
AI4CE
31
10
0
11 Jun 2023
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Push: Concurrent Probabilistic Programming for Bayesian Deep Learning
Daniel Huang
Christian Camaño
Jonathan Tsegaye
Jonathan Austin Gale
AI4CE
84
0
0
10 Jun 2023
Monte Carlo inference for semiparametric Bayesian regression
Monte Carlo inference for semiparametric Bayesian regression
Daniel R. Kowal
Bo-Hong Wu
148
1
0
08 Jun 2023
Beyond Vanilla Variational Autoencoders: Detecting Posterior Collapse in
  Conditional and Hierarchical Variational Autoencoders
Beyond Vanilla Variational Autoencoders: Detecting Posterior Collapse in Conditional and Hierarchical Variational Autoencoders
Hien Dang
Tho Tran
T. Nguyen
Nhat Ho
CMLDRL
93
5
0
08 Jun 2023
Estimating Uncertainty in PET Image Reconstruction via Deep Posterior
  Sampling
Estimating Uncertainty in PET Image Reconstruction via Deep Posterior Sampling
Tin Vlašić
Tomislav Matulić
D. Seršić
MedIm
66
2
0
07 Jun 2023
Effective Neural Topic Modeling with Embedding Clustering Regularization
Effective Neural Topic Modeling with Embedding Clustering Regularization
Xiaobao Wu
Xinshuai Dong
Thong Nguyen
Anh Tuan Luu
BDL
138
44
0
07 Jun 2023
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels
Alexander Immer
Tycho F. A. van der Ouderaa
Mark van der Wilk
Gunnar Rätsch
Bernhard Schölkopf
BDL
68
13
0
06 Jun 2023
Nonparametric Iterative Machine Teaching
Nonparametric Iterative Machine Teaching
Chen Zhang
Xiaofeng Cao
Weiyang Liu
Ivor Tsang
James T. Kwok
101
8
0
05 Jun 2023
Bivariate Causal Discovery using Bayesian Model Selection
Bivariate Causal Discovery using Bayesian Model Selection
Anish Dhir
Samuel Power
Mark van der Wilk
CML
81
3
0
05 Jun 2023
Deep Active Learning with Structured Neural Depth Search
Deep Active Learning with Structured Neural Depth Search
Xiaoyun Zhang
Xieyi Ping
Jianwei Zhang
77
0
0
05 Jun 2023
Provable convergence guarantees for black-box variational inference
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
101
21
0
04 Jun 2023
Variational Gaussian Process Diffusion Processes
Variational Gaussian Process Diffusion Processes
Prakhar Verma
Vincent Adam
Arno Solin
DiffM
139
6
0
03 Jun 2023
On the Convergence of Coordinate Ascent Variational Inference
On the Convergence of Coordinate Ascent Variational Inference
A. Bhattacharya
D. Pati
Yun Yang
82
13
0
01 Jun 2023
R-VGAL: A Sequential Variational Bayes Algorithm for Generalised Linear
  Mixed Models
R-VGAL: A Sequential Variational Bayes Algorithm for Generalised Linear Mixed Models
Bao Anh Vu
David Gunawan
A. Zammit‐Mangion
DRL
65
1
0
01 Jun 2023
Learning to solve Bayesian inverse problems: An amortized variational
  inference approach using Gaussian and Flow guides
Learning to solve Bayesian inverse problems: An amortized variational inference approach using Gaussian and Flow guides
Sharmila Karumuri
Ilias Bilionis
69
3
0
31 May 2023
Bayesian inference and neural estimation of acoustic wave propagation
Bayesian inference and neural estimation of acoustic wave propagation
Yongchao Huang
Yuhang He
Hong Ge
65
0
0
28 May 2023
Fair Clustering via Hierarchical Fair-Dirichlet Process
Fair Clustering via Hierarchical Fair-Dirichlet Process
Abhisek Chakraborty
A. Bhattacharya
D. Pati
FaML
57
3
0
27 May 2023
Revisiting Structured Variational Autoencoders
Revisiting Structured Variational Autoencoders
Yixiu Zhao
Scott W. Linderman
BDLDRL
59
9
0
25 May 2023
Bi-fidelity Variational Auto-encoder for Uncertainty Quantification
Bi-fidelity Variational Auto-encoder for Uncertainty Quantification
Nuojin Cheng
Osman Asif Malik
Subhayan De
Stephen Becker
Alireza Doostan
70
9
0
25 May 2023
Bayesian Reinforcement Learning for Automatic Voltage Control under
  Cyber-Induced Uncertainty
Bayesian Reinforcement Learning for Automatic Voltage Control under Cyber-Induced Uncertainty
A. Sahu
K. Davis
73
0
0
25 May 2023
Martian time-series unraveled: A multi-scale nested approach with
  factorial variational autoencoders
Martian time-series unraveled: A multi-scale nested approach with factorial variational autoencoders
Ali Siahkoohi
Rudy Morel
Randall Balestriero
Erwan Allys
G. Sainton
Taichi Kawamura
Maarten V. de Hoop
145
2
0
25 May 2023
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo
  Algorithms
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms
Tim Tsz-Kit Lau
Han Liu
Thomas Pock
101
4
0
25 May 2023
Minimizing $f$-Divergences by Interpolating Velocity Fields
Minimizing fff-Divergences by Interpolating Velocity Fields
Song Liu
Jiahao Yu
J. Simons
Mingxuan Yi
Mark Beaumont
115
5
0
24 May 2023
On the Convergence of Black-Box Variational Inference
On the Convergence of Black-Box Variational Inference
Kyurae Kim
Jisu Oh
Kaiwen Wu
Yi-An Ma
Jacob R. Gardner
BDL
96
17
0
24 May 2023
Wasserstein Gaussianization and Efficient Variational Bayes for Robust
  Bayesian Synthetic Likelihood
Wasserstein Gaussianization and Efficient Variational Bayes for Robust Bayesian Synthetic Likelihood
Nhat-Minh Nguyen
Minh-Ngoc Tran
Christopher C. Drovandi
David J. Nott
47
1
0
24 May 2023
Amortized Variational Inference with Coverage Guarantees
Amortized Variational Inference with Coverage Guarantees
Yash Patel
Declan McNamara
J. Loper
Jeffrey Regier
Ambuj Tewari
BDL
114
4
0
23 May 2023
Towards Understanding the Dynamics of Gaussian-Stein Variational
  Gradient Descent
Towards Understanding the Dynamics of Gaussian-Stein Variational Gradient Descent
Tianle Liu
Promit Ghosal
Krishnakumar Balasubramanian
Natesh S. Pillai
111
11
0
23 May 2023
Federated Variational Inference: Towards Improved Personalization and
  Generalization
Federated Variational Inference: Towards Improved Personalization and Generalization
Elahe Vedadi
Joshua V. Dillon
Philip Mansfield
K. Singhal
Arash Afkanpour
Warren Morningstar
FedMLBDL
86
3
0
23 May 2023
Fast Variational Inference for Bayesian Factor Analysis in Single and
  Multi-Study Settings
Fast Variational Inference for Bayesian Factor Analysis in Single and Multi-Study Settings
Blake Hansen
Alejandra Avalos-Pacheco
Massimiliano Russo
Roberta De Vito
120
5
0
22 May 2023
A Rational Model of Dimension-reduced Human Categorization
A Rational Model of Dimension-reduced Human Categorization
Yifan Hong
Chen Wang
27
0
0
22 May 2023
Massively Parallel Reweighted Wake-Sleep
Massively Parallel Reweighted Wake-Sleep
Thomas Heap
Gavin Leech
Laurence Aitchison
BDL
71
2
0
18 May 2023
To smooth a cloud or to pin it down: Guarantees and Insights on Score
  Matching in Denoising Diffusion Models
To smooth a cloud or to pin it down: Guarantees and Insights on Score Matching in Denoising Diffusion Models
Francisco Vargas
Teodora Reu
A. Kerekes
Michael M Bronstein
DiffM
105
1
0
16 May 2023
Physics reliable frugal uncertainty analysis for full waveform inversion
Physics reliable frugal uncertainty analysis for full waveform inversion
M. Izzatullah
M. Ravasi
T. Alkhalifah
47
3
0
13 May 2023
FedHB: Hierarchical Bayesian Federated Learning
FedHB: Hierarchical Bayesian Federated Learning
Minyoung Kim
Timothy M. Hospedales
FedML
73
6
0
08 May 2023
A Variational Perspective on Solving Inverse Problems with Diffusion
  Models
A Variational Perspective on Solving Inverse Problems with Diffusion Models
Morteza Mardani
Jiaming Song
Jan Kautz
Arash Vahdat
DiffM
102
146
0
07 May 2023
Uncertainty Quantification in Machine Learning for Engineering Design
  and Health Prognostics: A Tutorial
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
120
81
0
07 May 2023
Variational Nonlinear Kalman Filtering with Unknown Process Noise
  Covariance
Variational Nonlinear Kalman Filtering with Unknown Process Noise Covariance
Hua Lan
Jinjie Hu
Zengfu Wang
Q. Cheng
56
11
0
06 May 2023
Sparsifying Bayesian neural networks with latent binary variables and
  normalizing flows
Sparsifying Bayesian neural networks with latent binary variables and normalizing flows
Lars Skaaret-Lund
G. Storvik
A. Hubin
BDLUQCV
73
3
0
05 May 2023
Tensorizing flows: a tool for variational inference
Tensorizing flows: a tool for variational inference
Y. Khoo
M. Lindsey
Renana Keydar
DRL
70
4
0
03 May 2023
Cheap and Deterministic Inference for Deep State-Space Models of
  Interacting Dynamical Systems
Cheap and Deterministic Inference for Deep State-Space Models of Interacting Dynamical Systems
Andreas Look
M. Kandemir
Barbara Rakitsch
Jan Peters
BDL
65
6
0
02 May 2023
Variational Inference for Bayesian Neural Networks under Model and
  Parameter Uncertainty
Variational Inference for Bayesian Neural Networks under Model and Parameter Uncertainty
A. Hubin
G. Storvik
BDLUQCV
119
6
0
01 May 2023
Variational Bayes Made Easy
Variational Bayes Made Easy
Mohammad Emtiyaz Khan
BDL
64
1
0
27 Apr 2023
Causal Semantic Communication for Digital Twins: A Generalizable
  Imitation Learning Approach
Causal Semantic Communication for Digital Twins: A Generalizable Imitation Learning Approach
Christo Kurisummoottil Thomas
Walid Saad
Yong Xiao
85
22
0
25 Apr 2023
Score-Based Diffusion Models as Principled Priors for Inverse Imaging
Score-Based Diffusion Models as Principled Priors for Inverse Imaging
Berthy Feng
Jamie Smith
Michael Rubinstein
Huiwen Chang
Katherine Bouman
William T. Freeman
DiffM
176
98
0
23 Apr 2023
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
86
4
0
21 Apr 2023
Multi-module based CVAE to predict HVCM faults in the SNS accelerator
Multi-module based CVAE to predict HVCM faults in the SNS accelerator
Yasir Alanazi
M. Schram
Kishansingh Rajput
S. Goldenberg
Lasitha Vidyaratne
C. Pappas
M. Radaideh
Dawei Lu
Pradeep Ramuhalli
Sarah Cousineau
47
2
0
20 Apr 2023
Bayes Hilbert Spaces for Posterior Approximation
Bayes Hilbert Spaces for Posterior Approximation
George Wynne
97
1
0
18 Apr 2023
Previous
123...101112...353637
Next