ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1211.0358
  4. Cited By
Deep Gaussian Processes

Deep Gaussian Processes

2 November 2012
Andreas C. Damianou
Neil D. Lawrence
    GP
    BDL
ArXivPDFHTML

Papers citing "Deep Gaussian Processes"

50 / 191 papers shown
Title
Infinite-Fidelity Coregionalization for Physical Simulation
Infinite-Fidelity Coregionalization for Physical Simulation
Shibo Li
Zihan Wang
Robert M. Kirby
Shandian Zhe
AI4CE
28
6
0
01 Jul 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
29
0
0
27 Jun 2022
Noise Estimation in Gaussian Process Regression
Noise Estimation in Gaussian Process Regression
S. Ameli
S. Shadden
11
5
0
20 Jun 2022
Wide Bayesian neural networks have a simple weight posterior: theory and
  accelerated sampling
Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling
Jiri Hron
Roman Novak
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
48
6
0
15 Jun 2022
Relaxed Gaussian process interpolation: a goal-oriented approach to Bayesian optimization
Relaxed Gaussian process interpolation: a goal-oriented approach to Bayesian optimization
S. Petit
Julien Bect
E. Vázquez
41
1
0
07 Jun 2022
Information-theoretic Inducing Point Placement for High-throughput
  Bayesian Optimisation
Information-theoretic Inducing Point Placement for High-throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
24
4
0
06 Jun 2022
Efficient Transformed Gaussian Processes for Non-Stationary Dependent
  Multi-class Classification
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
Juan Maroñas
Daniel Hernández-Lobato
19
6
0
30 May 2022
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
Sample-Efficient Optimisation with Probabilistic Transformer Surrogates
A. Maraval
Matthieu Zimmer
Antoine Grosnit
Rasul Tutunov
Jun Wang
H. Ammar
30
2
0
27 May 2022
Fast Gaussian Process Posterior Mean Prediction via Local Cross
  Validation and Precomputation
Fast Gaussian Process Posterior Mean Prediction via Local Cross Validation and Precomputation
Alec M. Dunton
Benjamin W. Priest
Amanda Muyskens
GP
32
3
0
22 May 2022
Deep neural networks with dependent weights: Gaussian Process mixture
  limit, heavy tails, sparsity and compressibility
Deep neural networks with dependent weights: Gaussian Process mixture limit, heavy tails, sparsity and compressibility
Hoileong Lee
Fadhel Ayed
Paul Jung
Juho Lee
Hongseok Yang
François Caron
46
10
0
17 May 2022
On the inability of Gaussian process regression to optimally learn
  compositional functions
On the inability of Gaussian process regression to optimally learn compositional functions
M. Giordano
Kolyan Ray
Johannes Schmidt-Hieber
51
12
0
16 May 2022
Bézier Curve Gaussian Processes
Bézier Curve Gaussian Processes
Ronny Hug
S. Becker
Wolfgang Hubner
Michael Arens
Jürgen Beyerer
21
4
0
03 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
26
48
0
01 May 2022
Unsupervised Restoration of Weather-affected Images using Deep Gaussian
  Process-based CycleGAN
Unsupervised Restoration of Weather-affected Images using Deep Gaussian Process-based CycleGAN
R. Yasarla
Vishwanath A. Sindagi
Vishal M. Patel
40
2
0
23 Apr 2022
Bayesian Deep Learning with Multilevel Trace-class Neural Networks
Bayesian Deep Learning with Multilevel Trace-class Neural Networks
Neil K. Chada
Ajay Jasra
K. Law
Sumeetpal S. Singh
BDL
UQCV
83
3
0
24 Mar 2022
A Deep Bayesian Neural Network for Cardiac Arrhythmia Classification
  with Rejection from ECG Recordings
A Deep Bayesian Neural Network for Cardiac Arrhythmia Classification with Rejection from ECG Recordings
Wen-Rang Zhang
Xinxin Di
Guodong Wei
Shijia Geng
Zhaoji Fu
linda Qiao
UQCV
BDL
11
2
0
26 Feb 2022
TIML: Task-Informed Meta-Learning for Agriculture
TIML: Task-Informed Meta-Learning for Agriculture
Gabriel Tseng
Hannah Kerner
David Rolnick
19
7
0
04 Feb 2022
Bayesian Optimization of Function Networks
Bayesian Optimization of Function Networks
Raul Astudillo
P. Frazier
32
36
0
31 Dec 2021
Triangulation candidates for Bayesian optimization
Triangulation candidates for Bayesian optimization
R. Gramacy
Anna Sauer
Nathan Wycoff
24
13
0
14 Dec 2021
A Sparse Expansion For Deep Gaussian Processes
A Sparse Expansion For Deep Gaussian Processes
Liang Ding
Rui Tuo
Shahin Shahrampour
19
6
0
11 Dec 2021
Uncertainty quantification of a three-dimensional in-stent restenosis
  model with surrogate modelling
Uncertainty quantification of a three-dimensional in-stent restenosis model with surrogate modelling
Dongwei Ye
Pavel S. Zun
Valeria Krzhizhanovskaya
Alfons G. Hoekstra
27
1
0
11 Nov 2021
Multi-Task Neural Processes
Multi-Task Neural Processes
Jiayi Shen
Xiantong Zhen
M. Worring
Ling Shao
BDL
24
8
0
10 Nov 2021
Spatio-Temporal Variational Gaussian Processes
Spatio-Temporal Variational Gaussian Processes
Oliver Hamelijnck
William J. Wilkinson
Niki A. Loppi
Arno Solin
Theodoros Damoulas
AI4TS
19
31
0
02 Nov 2021
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Yonghui Fan
Yalin Wang
18
2
0
30 Oct 2021
Imitating Deep Learning Dynamics via Locally Elastic Stochastic
  Differential Equations
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations
Jiayao Zhang
Hua Wang
Weijie J. Su
35
7
0
11 Oct 2021
Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning
Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning
Chi-Ken Lu
Patrick Shafto
BDL
27
4
0
01 Oct 2021
Approximate Latent Force Model Inference
Approximate Latent Force Model Inference
Jacob Moss
Felix L. Opolka
Bianca Dumitrascu
Pietro Lio
49
3
0
24 Sep 2021
Accurate Remaining Useful Life Prediction with Uncertainty
  Quantification: a Deep Learning and Nonstationary Gaussian Process Approach
Accurate Remaining Useful Life Prediction with Uncertainty Quantification: a Deep Learning and Nonstationary Gaussian Process Approach
Zhaoyi Xu
Yanjie Guo
J. Saleh
19
25
0
23 Sep 2021
A Latent Restoring Force Approach to Nonlinear System Identification
A Latent Restoring Force Approach to Nonlinear System Identification
T. Rogers
Tobias Friis
29
18
0
22 Sep 2021
MEPG: A Minimalist Ensemble Policy Gradient Framework for Deep
  Reinforcement Learning
MEPG: A Minimalist Ensemble Policy Gradient Framework for Deep Reinforcement Learning
Qiang He
Yuxun Qu
Chen Gong
Xinwen Hou
OffRL
22
10
0
22 Sep 2021
Non-smooth Bayesian Optimization in Tuning Problems
Non-smooth Bayesian Optimization in Tuning Problems
Hengrui Luo
J. Demmel
Younghyun Cho
Xin Li
Yang Liu
25
13
0
15 Sep 2021
Neural Operator: Learning Maps Between Function Spaces
Neural Operator: Learning Maps Between Function Spaces
Nikola B. Kovachki
Zong-Yi Li
Burigede Liu
Kamyar Azizzadenesheli
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
52
440
0
19 Aug 2021
Deep Gaussian Process Emulation using Stochastic Imputation
Deep Gaussian Process Emulation using Stochastic Imputation
Deyu Ming
D. Williamson
S. Guillas
11
30
0
04 Jul 2021
Deep Gaussian Processes: A Survey
Deep Gaussian Processes: A Survey
Kalvik Jakkala
AI4CE
GP
BDL
29
19
0
21 Jun 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian
  Process Perspective
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
28
24
0
11 Jun 2021
Posterior contraction for deep Gaussian process priors
Posterior contraction for deep Gaussian process priors
G. Finocchio
Johannes Schmidt-Hieber
35
11
0
16 May 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
31
124
0
14 May 2021
Exploring Uncertainty in Deep Learning for Construction of Prediction
  Intervals
Exploring Uncertainty in Deep Learning for Construction of Prediction Intervals
Yuandu Lai
Yucheng Shi
Yahong Han
Yunfeng Shao
Meiyu Qi
Bingshuai Li
UQCV
38
15
0
27 Apr 2021
Deep Gaussian Processes for Biogeophysical Parameter Retrieval and Model
  Inversion
Deep Gaussian Processes for Biogeophysical Parameter Retrieval and Model Inversion
D. Svendsen
Pablo Morales-Álvarez
A. Ruescas
Rafael Molina
Gustau Camps-Valls
30
29
0
16 Apr 2021
GPflux: A Library for Deep Gaussian Processes
GPflux: A Library for Deep Gaussian Processes
Vincent Dutordoir
Hugh Salimbeni
Eric Hambro
John Mcleod
Felix Leibfried
A. Artemev
Mark van der Wilk
J. Hensman
M. Deisenroth
S. T. John
GP
35
23
0
12 Apr 2021
Deep and Statistical Learning in Biomedical Imaging: State of the Art in
  3D MRI Brain Tumor Segmentation
Deep and Statistical Learning in Biomedical Imaging: State of the Art in 3D MRI Brain Tumor Segmentation
K. R. M. Fernando
Cris P Tsokos
31
53
0
09 Mar 2021
Transferring model structure in Bayesian transfer learning for Gaussian
  process regression
Transferring model structure in Bayesian transfer learning for Gaussian process regression
Milan Papez
A. Quinn
19
11
0
18 Jan 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
42
49
0
27 Dec 2020
Uncertainty-driven ensembles of deep architectures for multiclass
  classification. Application to COVID-19 diagnosis in chest X-ray images
Uncertainty-driven ensembles of deep architectures for multiclass classification. Application to COVID-19 diagnosis in chest X-ray images
J. E. Arco
A. Ortiz
J. Ramírez
Francisco J. Martínez-Murcia
Yudong Zhang
Juan M Gorriz
UQCV
27
3
0
27 Nov 2020
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
57
0
08 Nov 2020
Transforming Gaussian Processes With Normalizing Flows
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
28
34
0
03 Nov 2020
A Bayesian Perspective on Training Speed and Model Selection
A Bayesian Perspective on Training Speed and Model Selection
Clare Lyle
Lisa Schut
Binxin Ru
Y. Gal
Mark van der Wilk
44
24
0
27 Oct 2020
Scalable Gaussian Process Variational Autoencoders
Scalable Gaussian Process Variational Autoencoders
Metod Jazbec
Matthew Ashman
Vincent Fortuin
Michael Pearce
Stephan Mandt
Gunnar Rätsch
DRL
BDL
21
25
0
26 Oct 2020
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
  Data
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data
Chacha Chen
Junjie Liang
Fenglong Ma
Lucas Glass
Jimeng Sun
Cao Xiao
21
26
0
22 Oct 2020
Probabilistic Numeric Convolutional Neural Networks
Probabilistic Numeric Convolutional Neural Networks
Marc Finzi
Roberto Bondesan
Max Welling
BDL
AI4TS
29
13
0
21 Oct 2020
Previous
1234
Next