Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1211.0358
Cited By
Deep Gaussian Processes
2 November 2012
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Gaussian Processes"
50 / 191 papers shown
Title
Sparse Gaussian Process Variational Autoencoders
Matthew Ashman
Jonathan So
Will Tebbutt
Vincent Fortuin
Michael Pearce
Richard Turner
24
33
0
20 Oct 2020
Ramifications of Approximate Posterior Inference for Bayesian Deep Learning in Adversarial and Out-of-Distribution Settings
John Mitros
A. Pakrashi
Brian Mac Namee
UQCV
26
2
0
03 Sep 2020
Machine Learning for Robust Identification of Complex Nonlinear Dynamical Systems: Applications to Earth Systems Modeling
Nishant Yadav
S. Ravela
A. Ganguly
OOD
AI4Cl
AI4CE
16
3
0
12 Aug 2020
Deep State-Space Gaussian Processes
Zheng Zhao
M. Emzir
Simo Särkkä
GP
43
19
0
11 Aug 2020
Blind hierarchical deconvolution
Arttu Arjas
L. Roininen
M. Sillanpää
A. Hauptmann
18
4
0
22 Jul 2020
Non-Stationary Multi-layered Gaussian Priors for Bayesian Inversion
M. Emzir
Sari Lasanen
Z. Purisha
L. Roininen
Simo Särkkä
22
9
0
28 Jun 2020
Bayesian Neural Networks: An Introduction and Survey
Ethan Goan
Clinton Fookes
BDL
UQCV
35
199
0
22 Jun 2020
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
26
10
0
18 Jun 2020
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
24
113
0
18 Jun 2020
NP-PROV: Neural Processes with Position-Relevant-Only Variances
Xuesong Wang
Lina Yao
Xianzhi Wang
Feiping Nie
BDL
26
3
0
15 Jun 2020
Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise Variance Parameterization
Andrew Stirn
David A. Knowles
DRL
18
10
0
08 Jun 2020
Global Optimization of Gaussian processes
Artur M. Schweidtmann
D. Bongartz
D. Grothe
Tim Kerkenhoff
Xiaopeng Lin
J. Najman
Alexander Mitsos
10
40
0
21 May 2020
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
26
60
0
17 May 2020
Time Series Forecasting With Deep Learning: A Survey
Bryan Lim
S. Zohren
AI4TS
AI4CE
54
1,187
0
28 Apr 2020
Energy-Based Processes for Exchangeable Data
Mengjiao Yang
Bo Dai
H. Dai
Dale Schuurmans
22
12
0
17 Mar 2020
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
40
94
0
02 Mar 2020
Time Series Data Augmentation for Deep Learning: A Survey
Qingsong Wen
Liang Sun
Fan Yang
Xiaomin Song
Jing Gao
Xue Wang
Huan Xu
AI4TS
32
635
0
27 Feb 2020
Graph Convolutional Gaussian Processes For Link Prediction
Felix L. Opolka
Pietro Lio
GNN
27
15
0
11 Feb 2020
Doubly Sparse Variational Gaussian Processes
Vincent Adam
Stefanos Eleftheriadis
N. Durrande
A. Artemev
J. Hensman
24
24
0
15 Jan 2020
Approximate Inference for Fully Bayesian Gaussian Process Regression
V. Lalchand
C. Rasmussen
GP
35
51
0
31 Dec 2019
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
33
191
0
28 Oct 2019
Implicit Posterior Variational Inference for Deep Gaussian Processes
Haibin Yu
Yizhou Chen
Zhongxiang Dai
K. H. Low
Patrick Jaillet
19
42
0
26 Oct 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
32
93
0
14 Oct 2019
On the expected behaviour of noise regularised deep neural networks as Gaussian processes
Arnu Pretorius
Herman Kamper
Steve Kroon
24
9
0
12 Oct 2019
A Kings Ransom for Encryption: Ransomware Classification using Augmented One-Shot Learning and Bayesian Approximation
Amir Atapour-Abarghouei
Stephen Bonner
A. Mcgough
24
7
0
19 Aug 2019
Probabilistic Regressor Chains with Monte Carlo Methods
Jesse Read
Luca Martino
BDL
UQCV
AI4CE
LRM
30
11
0
18 Jul 2019
Learning GPLVM with arbitrary kernels using the unscented transformation
Daniel Augusto R. M. A. de Souza
Diego Mesquita
C. L. C. Mattos
Joao P. P. Gomes
29
0
0
03 Jul 2019
Compositionally-Warped Gaussian Processes
Gonzalo Rios
Felipe A. Tobar
14
41
0
23 Jun 2019
Multi-resolution Multi-task Gaussian Processes
Oliver Hamelijnck
Theodoros Damoulas
Kangrui Wang
Mark Girolami
28
38
0
19 Jun 2019
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
38
77
0
19 Jun 2019
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
33
30
0
13 Jun 2019
Neural Likelihoods for Multi-Output Gaussian Processes
M. Jankowiak
Jacob R. Gardner
UQCV
BDL
29
3
0
31 May 2019
Non-linear Multitask Learning with Deep Gaussian Processes
Ayman Boustati
Theodoros Damoulas
R. Savage
BDL
19
5
0
29 May 2019
Graph Convolutional Gaussian Processes
Ian Walker
Ben Glocker
GNN
22
35
0
14 May 2019
On Exact Computation with an Infinitely Wide Neural Net
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
44
901
0
26 Apr 2019
Probabilistic Forecasting of Sensory Data with Generative Adversarial Networks - ForGAN
Alireza Koochali
P. Schichtel
Sheraz Ahmed
Andreas Dengel
AI4TS
22
72
0
29 Mar 2019
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
10
225
0
19 Mar 2019
Variational Inference of Joint Models using Multivariate Gaussian Convolution Processes
Xubo Yue
Raed Al Kontar
32
16
0
09 Mar 2019
Input Prioritization for Testing Neural Networks
Taejoon Byun
Vaibhav Sharma
Abhishek Vijayakumar
Sanjai Rayadurgam
D. Cofer
AAML
29
67
0
11 Jan 2019
Extending classical surrogate modelling to high-dimensions through supervised dimensionality reduction: a data-driven approach
C. Lataniotis
S. Marelli
Bruno Sudret
23
66
0
15 Dec 2018
Understanding Priors in Bayesian Neural Networks at the Unit Level
M. Vladimirova
Jakob Verbeek
Pablo Mesejo
Julyan Arbel
BDL
UQCV
6
4
0
11 Oct 2018
Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes
Roman Novak
Lechao Xiao
Jaehoon Lee
Yasaman Bahri
Greg Yang
Jiri Hron
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
25
306
0
11 Oct 2018
Probabilistic Meta-Representations Of Neural Networks
Theofanis Karaletsos
Peter Dayan
Zoubin Ghahramani
BDL
12
27
0
01 Oct 2018
Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
Dongkun Zhang
Lu Lu
Ling Guo
George Karniadakis
UQCV
27
397
0
21 Sep 2018
Learning of Tree-Structured Gaussian Graphical Models on Distributed Data under Communication Constraints
Mostafa Tavassolipour
S. Motahari
M. Manzuri-Shalmani
16
8
0
21 Sep 2018
Efficient Global Optimization using Deep Gaussian Processes
Ali Hebbal
Loïc Brevault
M. Balesdent
El-Ghazali Talbi
N. Melab
19
19
0
11 Sep 2018
Structured Bayesian Gaussian process latent variable model: applications to data-driven dimensionality reduction and high-dimensional inversion
Steven Atkinson
N. Zabaras
16
36
0
11 Jul 2018
Uncertainty in Multitask Transfer Learning
Alexandre Lacoste
Boris N. Oreshkin
Wonchang Chung
Thomas Boquet
Negar Rostamzadeh
David M. Krueger
BDL
UQCV
SSL
24
21
0
20 Jun 2018
Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo
Marton Havasi
José Miguel Hernández-Lobato
J. J. Murillo-Fuentes
BDL
19
96
0
14 Jun 2018
Building Bayesian Neural Networks with Blocks: On Structure, Interpretability and Uncertainty
Hao Zhou
Yunyang Xiong
Vikas Singh
UQCV
BDL
52
4
0
10 Jun 2018
Previous
1
2
3
4
Next