ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1211.0358
  4. Cited By
Deep Gaussian Processes

Deep Gaussian Processes

2 November 2012
Andreas C. Damianou
Neil D. Lawrence
    GP
    BDL
ArXivPDFHTML

Papers citing "Deep Gaussian Processes"

42 / 192 papers shown
Title
Building Bayesian Neural Networks with Blocks: On Structure,
  Interpretability and Uncertainty
Building Bayesian Neural Networks with Blocks: On Structure, Interpretability and Uncertainty
Hao Zhou
Yunyang Xiong
Vikas Singh
UQCV
BDL
52
4
0
10 Jun 2018
Variational Implicit Processes
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
24
68
0
06 Jun 2018
Sampling-Free Variational Inference of Bayesian Neural Networks by
  Variance Backpropagation
Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation
Manuel Haussmann
Fred Hamprecht
M. Kandemir
BDL
26
6
0
19 May 2018
Gaussian Process Behaviour in Wide Deep Neural Networks
Gaussian Process Behaviour in Wide Deep Neural Networks
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
35
548
0
30 Apr 2018
Posterior Inference for Sparse Hierarchical Non-stationary Models
Posterior Inference for Sparse Hierarchical Non-stationary Models
K. Monterrubio-Gómez
L. Roininen
S. Wade
Theo Damoulas
Mark Girolami
27
27
0
04 Apr 2018
Learning non-Gaussian Time Series using the Box-Cox Gaussian Process
Learning non-Gaussian Time Series using the Box-Cox Gaussian Process
Gonzalo Rios
Felipe A. Tobar
GP
13
14
0
19 Mar 2018
Gaussian Processes Over Graphs
Gaussian Processes Over Graphs
Arun Venkitaraman
S. Chatterjee
P. Händel
11
37
0
15 Mar 2018
Deep Learning in Mobile and Wireless Networking: A Survey
Deep Learning in Mobile and Wireless Networking: A Survey
Chaoyun Zhang
P. Patras
Hamed Haddadi
45
1,304
0
12 Mar 2018
A trans-disciplinary review of deep learning research for water
  resources scientists
A trans-disciplinary review of deep learning research for water resources scientists
Chaopeng Shen
AI4CE
33
682
0
06 Dec 2017
Gaussian Process Regression for Arctic Coastal Erosion Forecasting
Gaussian Process Regression for Arctic Coastal Erosion Forecasting
Matthew Kupilik
F. Witmer
E. MacLeod
Caixia Wang
T. Ravens
24
15
0
04 Dec 2017
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
Deep Neural Networks as Gaussian Processes
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
19
1,071
0
01 Nov 2017
Auto-Differentiating Linear Algebra
Auto-Differentiating Linear Algebra
Matthias Seeger
A. Hetzel
Zhenwen Dai
Eric Meissner
Neil D. Lawrence
17
38
0
24 Oct 2017
Deep Gaussian Covariance Network
Deep Gaussian Covariance Network
K. Cremanns
D. Roos
BDL
24
20
0
17 Oct 2017
Bayesian Alignments of Warped Multi-Output Gaussian Processes
Bayesian Alignments of Warped Multi-Output Gaussian Processes
Markus Kaiser
Clemens Otte
Thomas Runkler
Carl Henrik Ek
24
19
0
08 Oct 2017
Variational Grid Setting Network
Variational Grid Setting Network
Yu-Neng Chuang
Zi-Yu Huang
Yen-Lung Tsai
GAN
21
1
0
30 Sep 2017
Deep Active Learning for Named Entity Recognition
Deep Active Learning for Named Entity Recognition
Yanyao Shen
Hyokun Yun
Zachary Chase Lipton
Y. Kronrod
Anima Anandkumar
HAI
30
454
0
19 Jul 2017
DAC-h3: A Proactive Robot Cognitive Architecture to Acquire and Express
  Knowledge About the World and the Self
DAC-h3: A Proactive Robot Cognitive Architecture to Acquire and Express Knowledge About the World and the Self
Clément Moulin-Frier
Tobias Fischer
Maxime Petit
G. Pointeau
J. Puigbò
...
Giorgio Metta
T. Prescott
Y. Demiris
Peter Ford Dominey
P. Verschure
LM&Ro
29
66
0
12 Jun 2017
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
M. Deisenroth
BDL
GP
34
415
0
24 May 2017
Hierarchic Kernel Recursive Least-Squares
Hierarchic Kernel Recursive Least-Squares
Hossein Mohamadipanah
Mahdi Heydari
Girish Chowdhary
25
0
0
14 Apr 2017
Multiplicative Normalizing Flows for Variational Bayesian Neural
  Networks
Multiplicative Normalizing Flows for Variational Bayesian Neural Networks
Christos Louizos
Max Welling
BDL
21
454
0
06 Mar 2017
Learning Scalable Deep Kernels with Recurrent Structure
Learning Scalable Deep Kernels with Recurrent Structure
Maruan Al-Shedivat
A. Wilson
Yunus Saatchi
Zhiting Hu
Eric Xing
BDL
13
104
0
27 Oct 2016
Random Feature Expansions for Deep Gaussian Processes
Random Feature Expansions for Deep Gaussian Processes
Kurt Cutajar
Edwin V. Bonilla
Pietro Michiardi
Maurizio Filippone
BDL
14
142
0
14 Oct 2016
How priors of initial hyperparameters affect Gaussian process regression
  models
How priors of initial hyperparameters affect Gaussian process regression models
Zexun Chen
Bo Wang
18
86
0
25 May 2016
End-to-End Kernel Learning with Supervised Convolutional Kernel Networks
End-to-End Kernel Learning with Supervised Convolutional Kernel Networks
Julien Mairal
SSL
34
130
0
20 May 2016
Observational-Interventional Priors for Dose-Response Learning
Observational-Interventional Priors for Dose-Response Learning
Ricardo M. A. Silva
CML
14
32
0
05 May 2016
Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor
  Analysis
Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis
Andreas C. Damianou
Neil D. Lawrence
Carl Henrik Ek
16
12
0
17 Apr 2016
Cauchy difference priors for edge-preserving Bayesian inversion with an
  application to X-ray tomography
Cauchy difference priors for edge-preserving Bayesian inversion with an application to X-ray tomography
M. Markkanen
L. Roininen
Janne M. J. Huttunen
Sari Lasanen
44
32
0
19 Mar 2016
Structured and Efficient Variational Deep Learning with Matrix Gaussian
  Posteriors
Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors
Christos Louizos
Max Welling
BDL
33
253
0
15 Mar 2016
Inverse Reinforcement Learning via Deep Gaussian Process
Inverse Reinforcement Learning via Deep Gaussian Process
Ming Jin
Andreas C. Damianou
Pieter Abbeel
C. Spanos
OffRL
BDL
GP
20
22
0
26 Dec 2015
Recurrent Gaussian Processes
Recurrent Gaussian Processes
C. L. C. Mattos
Zhenwen Dai
Andreas C. Damianou
Jeremy Forth
G. Barreto
Neil D. Lawrence
BDL
32
75
0
20 Nov 2015
On the energy landscape of deep networks
On the energy landscape of deep networks
Pratik Chaudhari
Stefano Soatto
ODL
40
27
0
20 Nov 2015
Variational Auto-encoded Deep Gaussian Processes
Variational Auto-encoded Deep Gaussian Processes
Zhenwen Dai
Andreas C. Damianou
Javier I. González
Neil D. Lawrence
BDL
24
131
0
19 Nov 2015
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
61
872
0
06 Nov 2015
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
T. Nickson
Tom Gunter
C. Lloyd
Michael A. Osborne
Stephen J. Roberts
19
21
0
27 Oct 2015
A Bayesian approach to constrained single- and multi-objective
  optimization
A Bayesian approach to constrained single- and multi-objective optimization
Paul Feliot
Julien Bect
E. Vázquez
19
149
0
02 Oct 2015
Bayesian Convolutional Neural Networks with Bernoulli Approximate
  Variational Inference
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
202
745
0
06 Jun 2015
On Sparse variational methods and the Kullback-Leibler divergence
  between stochastic processes
On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes
A. G. Matthews
J. Hensman
Richard Turner
Zoubin Ghahramani
30
189
0
27 Apr 2015
Improving the Gaussian Process Sparse Spectrum Approximation by
  Representing Uncertainty in Frequency Inputs
Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs
Y. Gal
Richard Turner
21
78
0
09 Mar 2015
Hierarchical Mixture-of-Experts Model for Large-Scale Gaussian Process
  Regression
Hierarchical Mixture-of-Experts Model for Large-Scale Gaussian Process Regression
Jun Wei Ng
M. Deisenroth
31
51
0
09 Dec 2014
Variational Inference for Uncertainty on the Inputs of Gaussian Process
  Models
Variational Inference for Uncertainty on the Inputs of Gaussian Process Models
Andreas C. Damianou
Michalis K. Titsias
Neil D. Lawrence
41
25
0
08 Sep 2014
Surpassing Human-Level Face Verification Performance on LFW with
  GaussianFace
Surpassing Human-Level Face Verification Performance on LFW with GaussianFace
Chaochao Lu
Xiaoou Tang
CVBM
89
333
0
15 Apr 2014
Previous
1234