Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1211.0358
Cited By
Deep Gaussian Processes
2 November 2012
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Gaussian Processes"
42 / 192 papers shown
Title
Building Bayesian Neural Networks with Blocks: On Structure, Interpretability and Uncertainty
Hao Zhou
Yunyang Xiong
Vikas Singh
UQCV
BDL
52
4
0
10 Jun 2018
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
24
68
0
06 Jun 2018
Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation
Manuel Haussmann
Fred Hamprecht
M. Kandemir
BDL
26
6
0
19 May 2018
Gaussian Process Behaviour in Wide Deep Neural Networks
A. G. Matthews
Mark Rowland
Jiri Hron
Richard Turner
Zoubin Ghahramani
BDL
35
548
0
30 Apr 2018
Posterior Inference for Sparse Hierarchical Non-stationary Models
K. Monterrubio-Gómez
L. Roininen
S. Wade
Theo Damoulas
Mark Girolami
27
27
0
04 Apr 2018
Learning non-Gaussian Time Series using the Box-Cox Gaussian Process
Gonzalo Rios
Felipe A. Tobar
GP
13
14
0
19 Mar 2018
Gaussian Processes Over Graphs
Arun Venkitaraman
S. Chatterjee
P. Händel
11
37
0
15 Mar 2018
Deep Learning in Mobile and Wireless Networking: A Survey
Chaoyun Zhang
P. Patras
Hamed Haddadi
45
1,304
0
12 Mar 2018
A trans-disciplinary review of deep learning research for water resources scientists
Chaopeng Shen
AI4CE
33
682
0
06 Dec 2017
Gaussian Process Regression for Arctic Coastal Erosion Forecasting
Matthew Kupilik
F. Witmer
E. MacLeod
Caixia Wang
T. Ravens
24
15
0
04 Dec 2017
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
Deep Neural Networks as Gaussian Processes
Jaehoon Lee
Yasaman Bahri
Roman Novak
S. Schoenholz
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
UQCV
BDL
19
1,071
0
01 Nov 2017
Auto-Differentiating Linear Algebra
Matthias Seeger
A. Hetzel
Zhenwen Dai
Eric Meissner
Neil D. Lawrence
17
38
0
24 Oct 2017
Deep Gaussian Covariance Network
K. Cremanns
D. Roos
BDL
24
20
0
17 Oct 2017
Bayesian Alignments of Warped Multi-Output Gaussian Processes
Markus Kaiser
Clemens Otte
Thomas Runkler
Carl Henrik Ek
24
19
0
08 Oct 2017
Variational Grid Setting Network
Yu-Neng Chuang
Zi-Yu Huang
Yen-Lung Tsai
GAN
21
1
0
30 Sep 2017
Deep Active Learning for Named Entity Recognition
Yanyao Shen
Hyokun Yun
Zachary Chase Lipton
Y. Kronrod
Anima Anandkumar
HAI
30
454
0
19 Jul 2017
DAC-h3: A Proactive Robot Cognitive Architecture to Acquire and Express Knowledge About the World and the Self
Clément Moulin-Frier
Tobias Fischer
Maxime Petit
G. Pointeau
J. Puigbò
...
Giorgio Metta
T. Prescott
Y. Demiris
Peter Ford Dominey
P. Verschure
LM&Ro
29
66
0
12 Jun 2017
Doubly Stochastic Variational Inference for Deep Gaussian Processes
Hugh Salimbeni
M. Deisenroth
BDL
GP
34
415
0
24 May 2017
Hierarchic Kernel Recursive Least-Squares
Hossein Mohamadipanah
Mahdi Heydari
Girish Chowdhary
25
0
0
14 Apr 2017
Multiplicative Normalizing Flows for Variational Bayesian Neural Networks
Christos Louizos
Max Welling
BDL
21
454
0
06 Mar 2017
Learning Scalable Deep Kernels with Recurrent Structure
Maruan Al-Shedivat
A. Wilson
Yunus Saatchi
Zhiting Hu
Eric Xing
BDL
13
104
0
27 Oct 2016
Random Feature Expansions for Deep Gaussian Processes
Kurt Cutajar
Edwin V. Bonilla
Pietro Michiardi
Maurizio Filippone
BDL
14
142
0
14 Oct 2016
How priors of initial hyperparameters affect Gaussian process regression models
Zexun Chen
Bo Wang
18
86
0
25 May 2016
End-to-End Kernel Learning with Supervised Convolutional Kernel Networks
Julien Mairal
SSL
34
130
0
20 May 2016
Observational-Interventional Priors for Dose-Response Learning
Ricardo M. A. Silva
CML
14
32
0
05 May 2016
Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis
Andreas C. Damianou
Neil D. Lawrence
Carl Henrik Ek
16
12
0
17 Apr 2016
Cauchy difference priors for edge-preserving Bayesian inversion with an application to X-ray tomography
M. Markkanen
L. Roininen
Janne M. J. Huttunen
Sari Lasanen
44
32
0
19 Mar 2016
Structured and Efficient Variational Deep Learning with Matrix Gaussian Posteriors
Christos Louizos
Max Welling
BDL
33
253
0
15 Mar 2016
Inverse Reinforcement Learning via Deep Gaussian Process
Ming Jin
Andreas C. Damianou
Pieter Abbeel
C. Spanos
OffRL
BDL
GP
20
22
0
26 Dec 2015
Recurrent Gaussian Processes
C. L. C. Mattos
Zhenwen Dai
Andreas C. Damianou
Jeremy Forth
G. Barreto
Neil D. Lawrence
BDL
32
75
0
20 Nov 2015
On the energy landscape of deep networks
Pratik Chaudhari
Stefano Soatto
ODL
40
27
0
20 Nov 2015
Variational Auto-encoded Deep Gaussian Processes
Zhenwen Dai
Andreas C. Damianou
Javier I. González
Neil D. Lawrence
BDL
24
131
0
19 Nov 2015
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
61
872
0
06 Nov 2015
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
T. Nickson
Tom Gunter
C. Lloyd
Michael A. Osborne
Stephen J. Roberts
19
21
0
27 Oct 2015
A Bayesian approach to constrained single- and multi-objective optimization
Paul Feliot
Julien Bect
E. Vázquez
19
149
0
02 Oct 2015
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
202
745
0
06 Jun 2015
On Sparse variational methods and the Kullback-Leibler divergence between stochastic processes
A. G. Matthews
J. Hensman
Richard Turner
Zoubin Ghahramani
30
189
0
27 Apr 2015
Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs
Y. Gal
Richard Turner
21
78
0
09 Mar 2015
Hierarchical Mixture-of-Experts Model for Large-Scale Gaussian Process Regression
Jun Wei Ng
M. Deisenroth
31
51
0
09 Dec 2014
Variational Inference for Uncertainty on the Inputs of Gaussian Process Models
Andreas C. Damianou
Michalis K. Titsias
Neil D. Lawrence
41
25
0
08 Sep 2014
Surpassing Human-Level Face Verification Performance on LFW with GaussianFace
Chaochao Lu
Xiaoou Tang
CVBM
89
333
0
15 Apr 2014
Previous
1
2
3
4