Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1211.0358
Cited By
Deep Gaussian Processes
2 November 2012
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Gaussian Processes"
50 / 189 papers shown
Title
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Zhidi Lin
Ying Li
Feng Yin
Juan Maroñas
Alexandre Thiéry
54
0
0
24 Mar 2025
On the Generalization of Representation Uncertainty in Earth Observation
Spyros Kondylatos
N. Bountos
Dimitrios Michail
Xiao Xiang Zhu
Gustau Camps-Valls
Ioannis Papoutsis
74
1
0
10 Mar 2025
Uncertainty Quantification With Noise Injection in Neural Networks: A Bayesian Perspective
Xueqiong Yuan
Jipeng Li
E. Kuruoglu
UQCV
BDL
45
0
0
21 Jan 2025
Bayesian Adaptive Calibration and Optimal Design
Rafael Oliveira
Dino Sejdinovic
David Howard
Edwin Bonilla
113
0
0
20 Jan 2025
Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
M. Risser
M. Noack
Hengrui Luo
Ronald Pandolfi
GP
33
0
0
07 Nov 2024
Residual Deep Gaussian Processes on Manifolds
Kacper Wyrwal
Andreas Krause
Viacheslav Borovitskiy
BDL
49
0
0
31 Oct 2024
Federated Neural Nonparametric Point Processes
Hui Chen
Hengyu Liu
Hengyu Liu
Xuhui Fan
Zhilin Zhao
Feng Zhou
Christopher J. Quinn
Longbing Cao
FedML
43
0
0
08 Oct 2024
Deep Kernel Posterior Learning under Infinite Variance Prior Weights
Jorge Loría
A. Bhadra
BDL
UQCV
66
0
0
02 Oct 2024
Non-stationary and Sparsely-correlated Multi-output Gaussian Process with Spike-and-Slab Prior
Wang Xinming
Li Yongxiang
Yue Xiaowei
Wu Jianguo
26
0
0
05 Sep 2024
Uncertainty-Aware Deep Neural Representations for Visual Analysis of Vector Field Data
Atul Kumar
S. Garg
Soumya Dutta
53
0
0
23 Jul 2024
Global Optimisation of Black-Box Functions with Generative Models in the Wasserstein Space
Tigran Ramazyan
M. Hushchyn
D. Derkach
34
0
0
16 Jul 2024
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
Arthur Jacot
Seok Hoan Choi
Yuxiao Wen
AI4CE
94
2
0
08 Jul 2024
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
79
0
0
01 Jul 2024
Posterior and variational inference for deep neural networks with heavy-tailed weights
Ismael Castillo
Paul Egels
BDL
60
3
0
05 Jun 2024
Computing conservative probabilities of rare events with surrogates
Nicolas Bousquet
27
0
0
26 Mar 2024
Multi-Fidelity Bayesian Optimization With Across-Task Transferable Max-Value Entropy Search
Yunchuan Zhang
Sangwoo Park
Osvaldo Simeone
48
5
0
14 Mar 2024
Explainable Learning with Gaussian Processes
Kurt Butler
Guanchao Feng
P. Djuric
39
1
0
11 Mar 2024
Deep Horseshoe Gaussian Processes
Ismael Castillo
Thibault Randrianarisoa
BDL
UQCV
44
5
0
04 Mar 2024
Gradient-enhanced deep Gaussian processes for multifidelity modelling
Viv Bone
Chris van der Heide
Kieran Mackle
Ingo Jahn
P. Dower
Chris Manzie
27
1
0
25 Feb 2024
Gaussian process learning of nonlinear dynamics
Dongwei Ye
Mengwu Guo
20
4
0
19 Dec 2023
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
28
10
0
01 Nov 2023
Efficient Bayesian Learning Curve Extrapolation using Prior-Data Fitted Networks
Steven Adriaensen
Herilalaina Rakotoarison
Samuel G. Müller
Frank Hutter
BDL
31
19
0
31 Oct 2023
Multi-Response Heteroscedastic Gaussian Process Models and Their Inference
Taehee Lee
Jun S. Liu
13
1
0
29 Aug 2023
Quantitative CLTs in Deep Neural Networks
Stefano Favaro
Boris Hanin
Domenico Marinucci
I. Nourdin
G. Peccati
BDL
33
12
0
12 Jul 2023
Probabilistic-based Feature Embedding of 4-D Light Fields for Compressive Imaging and Denoising
Xianqiang Lyu
Junhui Hou
41
3
0
15 Jun 2023
On Neural Networks as Infinite Tree-Structured Probabilistic Graphical Models
Bo-wen Li
Alexandar J. Thomson
Matthew M. Engelhard
David Page
David Page
BDL
AI4CE
24
0
0
27 May 2023
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Felix Jimenez
Matthias Katzfuss
BDL
UQCV
64
1
0
26 May 2023
Bayes Linear Analysis for Statistical Modelling with Uncertain Inputs
Samuel E. Jackson
D. Woods
11
0
0
09 May 2023
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
33
75
0
07 May 2023
Representing Additive Gaussian Processes by Sparse Matrices
Lu Zou
Haoyuan Chen
Liang Ding
28
0
0
29 Apr 2023
Actually Sparse Variational Gaussian Processes
Harry Jake Cunningham
Daniel Augusto R. M. A. de Souza
So Takao
Mark van der Wilk
M. Deisenroth
32
5
0
11 Apr 2023
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Ba-Hien Tran
Babak Shahbaba
Stephan Mandt
Maurizio Filippone
SyDa
BDL
UQCV
21
5
0
09 Feb 2023
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
32
24
0
24 Jan 2023
Multi-view Kernel PCA for Time series Forecasting
Arun Pandey
Hannes De Meulemeester
B. De Moor
Johan A. K. Suykens
AI4TS
36
5
0
24 Jan 2023
Towards Flexibility and Interpretability of Gaussian Process State-Space Model
Zhidi Lin
Feng Yin
Juan Maroñas
34
7
0
21 Jan 2023
Active Learning of Piecewise Gaussian Process Surrogates
Chiwoo Park
R. Waelder
Bonggwon Kang
Benji Maruyama
Soondo Hong
R. Gramacy
GP
27
1
0
20 Jan 2023
Self-Supervised Learning for Data Scarcity in a Fatigue Damage Prognostic Problem
A. Akrim
C. Gogu
R. Vingerhoeds
M. Salaün
AI4CE
35
23
0
20 Jan 2023
Robust Bayesian Target Value Optimization
J. G. Hoffer
Sascha Ranftl
Bernhard C. Geiger
22
9
0
11 Jan 2023
Learning Continuous Depth Representation via Geometric Spatial Aggregator
Xiaohang Wang
Xuanhong Chen
Bingbing Ni
Zhengyan Tong
Hang Wang
MDE
22
6
0
07 Dec 2022
What's Behind the Mask: Estimating Uncertainty in Image-to-Image Problems
Gilad Kutiel
Regev Cohen
Michael Elad
Daniel Freedman
UQCV
34
5
0
28 Nov 2022
Multi-fidelity Gaussian Process for Biomanufacturing Process Modeling with Small Data
Yuan Sun
Winton Nathan-Roberts
T. Pham
E. Otte
U. Aickelin
AI4CE
10
4
0
26 Nov 2022
Bayesian Learning for Neural Networks: an algorithmic survey
M. Magris
Alexandros Iosifidis
BDL
DRL
35
68
0
21 Nov 2022
Deep Gaussian Processes for Air Quality Inference
Aadesh Desai
Eshan Gujarathi
Saagar Parikh
Sachin Yadav
Zeel B Patel
Nipun Batra
36
2
0
18 Nov 2022
Introduction and Exemplars of Uncertainty Decomposition
Shuo Chen
UD
UQCV
PER
30
0
0
17 Nov 2022
Scalable Bayesian Transformed Gaussian Processes
Xinran Zhu
Leo Huang
Cameron Ibrahim
E. Lee
D. Bindel
27
1
0
20 Oct 2022
Non-Gaussian Process Regression
Y. Kindap
S. Godsill
GP
13
1
0
07 Sep 2022
Bayesian Neural Network Language Modeling for Speech Recognition
Boyang Xue
Shoukang Hu
Junhao Xu
Mengzhe Geng
Xunying Liu
Helen M. Meng
UQCV
BDL
44
14
0
28 Aug 2022
Interpretable Uncertainty Quantification in AI for HEP
Thomas Y. Chen
B. Dey
A. Ghosh
Michael Kagan
Brian D. Nord
Nesar Ramachandra
33
7
0
05 Aug 2022
Decision SincNet: Neurocognitive models of decision making that predict cognitive processes from neural signals
Qi Sun
Khuong Vo
K. Lui
Michael D. Nunez
J. Vandekerckhove
R. Srinivasan
18
0
0
04 Aug 2022
Infinite-Fidelity Coregionalization for Physical Simulation
Shibo Li
Zihan Wang
Robert M. Kirby
Shandian Zhe
AI4CE
28
6
0
01 Jul 2022
1
2
3
4
Next