ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1211.0358
  4. Cited By
Deep Gaussian Processes

Deep Gaussian Processes

2 November 2012
Andreas C. Damianou
Neil D. Lawrence
    GP
    BDL
ArXivPDFHTML

Papers citing "Deep Gaussian Processes"

50 / 189 papers shown
Title
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Zhidi Lin
Ying Li
Feng Yin
Juan Maroñas
Alexandre Thiéry
54
0
0
24 Mar 2025
On the Generalization of Representation Uncertainty in Earth Observation
Spyros Kondylatos
N. Bountos
Dimitrios Michail
Xiao Xiang Zhu
Gustau Camps-Valls
Ioannis Papoutsis
74
1
0
10 Mar 2025
Uncertainty Quantification With Noise Injection in Neural Networks: A Bayesian Perspective
Uncertainty Quantification With Noise Injection in Neural Networks: A Bayesian Perspective
Xueqiong Yuan
Jipeng Li
E. Kuruoglu
UQCV
BDL
45
0
0
21 Jan 2025
Bayesian Adaptive Calibration and Optimal Design
Bayesian Adaptive Calibration and Optimal Design
Rafael Oliveira
Dino Sejdinovic
David Howard
Edwin Bonilla
113
0
0
20 Jan 2025
Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
Compactly-supported nonstationary kernels for computing exact Gaussian processes on big data
M. Risser
M. Noack
Hengrui Luo
Ronald Pandolfi
GP
33
0
0
07 Nov 2024
Residual Deep Gaussian Processes on Manifolds
Residual Deep Gaussian Processes on Manifolds
Kacper Wyrwal
Andreas Krause
Viacheslav Borovitskiy
BDL
49
0
0
31 Oct 2024
Federated Neural Nonparametric Point Processes
Federated Neural Nonparametric Point Processes
Hui Chen
Hengyu Liu
Hengyu Liu
Xuhui Fan
Zhilin Zhao
Feng Zhou
Christopher J. Quinn
Longbing Cao
FedML
43
0
0
08 Oct 2024
Deep Kernel Posterior Learning under Infinite Variance Prior Weights
Deep Kernel Posterior Learning under Infinite Variance Prior Weights
Jorge Loría
A. Bhadra
BDL
UQCV
66
0
0
02 Oct 2024
Non-stationary and Sparsely-correlated Multi-output Gaussian Process
  with Spike-and-Slab Prior
Non-stationary and Sparsely-correlated Multi-output Gaussian Process with Spike-and-Slab Prior
Wang Xinming
Li Yongxiang
Yue Xiaowei
Wu Jianguo
26
0
0
05 Sep 2024
Uncertainty-Aware Deep Neural Representations for Visual Analysis of
  Vector Field Data
Uncertainty-Aware Deep Neural Representations for Visual Analysis of Vector Field Data
Atul Kumar
S. Garg
Soumya Dutta
53
0
0
23 Jul 2024
Global Optimisation of Black-Box Functions with Generative Models in the
  Wasserstein Space
Global Optimisation of Black-Box Functions with Generative Models in the Wasserstein Space
Tigran Ramazyan
M. Hushchyn
D. Derkach
34
0
0
16 Jul 2024
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
Arthur Jacot
Seok Hoan Choi
Yuxiao Wen
AI4CE
94
2
0
08 Jul 2024
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Adaptive RKHS Fourier Features for Compositional Gaussian Process Models
Xinxing Shi
Thomas Baldwin-McDonald
Mauricio A. Álvarez
79
0
0
01 Jul 2024
Posterior and variational inference for deep neural networks with heavy-tailed weights
Posterior and variational inference for deep neural networks with heavy-tailed weights
Ismael Castillo
Paul Egels
BDL
60
3
0
05 Jun 2024
Computing conservative probabilities of rare events with surrogates
Computing conservative probabilities of rare events with surrogates
Nicolas Bousquet
27
0
0
26 Mar 2024
Multi-Fidelity Bayesian Optimization With Across-Task Transferable Max-Value Entropy Search
Multi-Fidelity Bayesian Optimization With Across-Task Transferable Max-Value Entropy Search
Yunchuan Zhang
Sangwoo Park
Osvaldo Simeone
48
5
0
14 Mar 2024
Explainable Learning with Gaussian Processes
Explainable Learning with Gaussian Processes
Kurt Butler
Guanchao Feng
P. Djuric
39
1
0
11 Mar 2024
Deep Horseshoe Gaussian Processes
Deep Horseshoe Gaussian Processes
Ismael Castillo
Thibault Randrianarisoa
BDL
UQCV
44
5
0
04 Mar 2024
Gradient-enhanced deep Gaussian processes for multifidelity modelling
Gradient-enhanced deep Gaussian processes for multifidelity modelling
Viv Bone
Chris van der Heide
Kieran Mackle
Ingo Jahn
P. Dower
Chris Manzie
27
1
0
25 Feb 2024
Gaussian process learning of nonlinear dynamics
Gaussian process learning of nonlinear dynamics
Dongwei Ye
Mengwu Guo
20
4
0
19 Dec 2023
Robust and Conjugate Gaussian Process Regression
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
28
10
0
01 Nov 2023
Efficient Bayesian Learning Curve Extrapolation using Prior-Data Fitted
  Networks
Efficient Bayesian Learning Curve Extrapolation using Prior-Data Fitted Networks
Steven Adriaensen
Herilalaina Rakotoarison
Samuel G. Müller
Frank Hutter
BDL
31
19
0
31 Oct 2023
Multi-Response Heteroscedastic Gaussian Process Models and Their
  Inference
Multi-Response Heteroscedastic Gaussian Process Models and Their Inference
Taehee Lee
Jun S. Liu
13
1
0
29 Aug 2023
Quantitative CLTs in Deep Neural Networks
Quantitative CLTs in Deep Neural Networks
Stefano Favaro
Boris Hanin
Domenico Marinucci
I. Nourdin
G. Peccati
BDL
33
12
0
12 Jul 2023
Probabilistic-based Feature Embedding of 4-D Light Fields for
  Compressive Imaging and Denoising
Probabilistic-based Feature Embedding of 4-D Light Fields for Compressive Imaging and Denoising
Xianqiang Lyu
Junhui Hou
41
3
0
15 Jun 2023
On Neural Networks as Infinite Tree-Structured Probabilistic Graphical Models
On Neural Networks as Infinite Tree-Structured Probabilistic Graphical Models
Bo-wen Li
Alexandar J. Thomson
Matthew M. Engelhard
David Page
David Page
BDL
AI4CE
24
0
0
27 May 2023
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Felix Jimenez
Matthias Katzfuss
BDL
UQCV
64
1
0
26 May 2023
Bayes Linear Analysis for Statistical Modelling with Uncertain Inputs
Bayes Linear Analysis for Statistical Modelling with Uncertain Inputs
Samuel E. Jackson
D. Woods
11
0
0
09 May 2023
Uncertainty Quantification in Machine Learning for Engineering Design
  and Health Prognostics: A Tutorial
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
33
75
0
07 May 2023
Representing Additive Gaussian Processes by Sparse Matrices
Representing Additive Gaussian Processes by Sparse Matrices
Lu Zou
Haoyuan Chen
Liang Ding
28
0
0
29 Apr 2023
Actually Sparse Variational Gaussian Processes
Actually Sparse Variational Gaussian Processes
Harry Jake Cunningham
Daniel Augusto R. M. A. de Souza
So Takao
Mark van der Wilk
M. Deisenroth
32
5
0
11 Apr 2023
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Ba-Hien Tran
Babak Shahbaba
Stephan Mandt
Maurizio Filippone
SyDa
BDL
UQCV
21
5
0
09 Feb 2023
Inducing Point Allocation for Sparse Gaussian Processes in
  High-Throughput Bayesian Optimisation
Inducing Point Allocation for Sparse Gaussian Processes in High-Throughput Bayesian Optimisation
Henry B. Moss
Sebastian W. Ober
Victor Picheny
32
24
0
24 Jan 2023
Multi-view Kernel PCA for Time series Forecasting
Multi-view Kernel PCA for Time series Forecasting
Arun Pandey
Hannes De Meulemeester
B. De Moor
Johan A. K. Suykens
AI4TS
36
5
0
24 Jan 2023
Towards Flexibility and Interpretability of Gaussian Process State-Space
  Model
Towards Flexibility and Interpretability of Gaussian Process State-Space Model
Zhidi Lin
Feng Yin
Juan Maroñas
34
7
0
21 Jan 2023
Active Learning of Piecewise Gaussian Process Surrogates
Active Learning of Piecewise Gaussian Process Surrogates
Chiwoo Park
R. Waelder
Bonggwon Kang
Benji Maruyama
Soondo Hong
R. Gramacy
GP
27
1
0
20 Jan 2023
Self-Supervised Learning for Data Scarcity in a Fatigue Damage
  Prognostic Problem
Self-Supervised Learning for Data Scarcity in a Fatigue Damage Prognostic Problem
A. Akrim
C. Gogu
R. Vingerhoeds
M. Salaün
AI4CE
35
23
0
20 Jan 2023
Robust Bayesian Target Value Optimization
Robust Bayesian Target Value Optimization
J. G. Hoffer
Sascha Ranftl
Bernhard C. Geiger
22
9
0
11 Jan 2023
Learning Continuous Depth Representation via Geometric Spatial
  Aggregator
Learning Continuous Depth Representation via Geometric Spatial Aggregator
Xiaohang Wang
Xuanhong Chen
Bingbing Ni
Zhengyan Tong
Hang Wang
MDE
22
6
0
07 Dec 2022
What's Behind the Mask: Estimating Uncertainty in Image-to-Image
  Problems
What's Behind the Mask: Estimating Uncertainty in Image-to-Image Problems
Gilad Kutiel
Regev Cohen
Michael Elad
Daniel Freedman
UQCV
34
5
0
28 Nov 2022
Multi-fidelity Gaussian Process for Biomanufacturing Process Modeling
  with Small Data
Multi-fidelity Gaussian Process for Biomanufacturing Process Modeling with Small Data
Yuan Sun
Winton Nathan-Roberts
T. Pham
E. Otte
U. Aickelin
AI4CE
10
4
0
26 Nov 2022
Bayesian Learning for Neural Networks: an algorithmic survey
Bayesian Learning for Neural Networks: an algorithmic survey
M. Magris
Alexandros Iosifidis
BDL
DRL
35
68
0
21 Nov 2022
Deep Gaussian Processes for Air Quality Inference
Deep Gaussian Processes for Air Quality Inference
Aadesh Desai
Eshan Gujarathi
Saagar Parikh
Sachin Yadav
Zeel B Patel
Nipun Batra
36
2
0
18 Nov 2022
Introduction and Exemplars of Uncertainty Decomposition
Introduction and Exemplars of Uncertainty Decomposition
Shuo Chen
UD
UQCV
PER
30
0
0
17 Nov 2022
Scalable Bayesian Transformed Gaussian Processes
Scalable Bayesian Transformed Gaussian Processes
Xinran Zhu
Leo Huang
Cameron Ibrahim
E. Lee
D. Bindel
27
1
0
20 Oct 2022
Non-Gaussian Process Regression
Non-Gaussian Process Regression
Y. Kindap
S. Godsill
GP
13
1
0
07 Sep 2022
Bayesian Neural Network Language Modeling for Speech Recognition
Bayesian Neural Network Language Modeling for Speech Recognition
Boyang Xue
Shoukang Hu
Junhao Xu
Mengzhe Geng
Xunying Liu
Helen M. Meng
UQCV
BDL
44
14
0
28 Aug 2022
Interpretable Uncertainty Quantification in AI for HEP
Interpretable Uncertainty Quantification in AI for HEP
Thomas Y. Chen
B. Dey
A. Ghosh
Michael Kagan
Brian D. Nord
Nesar Ramachandra
33
7
0
05 Aug 2022
Decision SincNet: Neurocognitive models of decision making that predict
  cognitive processes from neural signals
Decision SincNet: Neurocognitive models of decision making that predict cognitive processes from neural signals
Qi Sun
Khuong Vo
K. Lui
Michael D. Nunez
J. Vandekerckhove
R. Srinivasan
18
0
0
04 Aug 2022
Infinite-Fidelity Coregionalization for Physical Simulation
Infinite-Fidelity Coregionalization for Physical Simulation
Shibo Li
Zihan Wang
Robert M. Kirby
Shandian Zhe
AI4CE
28
6
0
01 Jul 2022
1234
Next