Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1206.1901
Cited By
MCMC using Hamiltonian dynamics
9 June 2012
Radford M. Neal
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MCMC using Hamiltonian dynamics"
50 / 1,032 papers shown
Title
Learning Physics between Digital Twins with Low-Fidelity Models and Physics-Informed Gaussian Processes
Michail Spitieris
I. Steinsland
AI4CE
11
0
0
16 Jun 2022
CARD: Classification and Regression Diffusion Models
Xizewen Han
Huangjie Zheng
Mingyuan Zhou
DiffM
38
108
0
15 Jun 2022
Benchmarking Bayesian neural networks and evaluation metrics for regression tasks
B. Staber
Sébastien Da Veiga
UQCV
BDL
37
3
0
08 Jun 2022
Certified Dimension Reduction for Bayesian Updating with the Cross-Entropy Method
Max Ehre
Rafael Flock
M. Fußeder
I. Papaioannou
D. Štraub
11
3
0
07 Jun 2022
Functional Ensemble Distillation
Coby Penso
Idan Achituve
Ethan Fetaya
FedML
23
2
0
05 Jun 2022
Asymptotic Properties for Bayesian Neural Network in Besov Space
Kyeongwon Lee
Jaeyong Lee
BDL
8
4
0
01 Jun 2022
Nested sampling for physical scientists
G. Ashton
N. Bernstein
Johannes Buchner
Xi Chen
Gábor Csányi
...
Leah F. South
J. Veitch
Philipp Wacker
D. Wales
David Yallup
36
76
0
31 May 2022
Mean Field inference of CRFs based on GAT
LingHong Xing
Xiangxiang Ma
Guangsheng Luo
13
0
0
29 May 2022
Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian Inference
R. Grumitt
B. Dai
U. Seljak
BDL
24
12
0
27 May 2022
RL with KL penalties is better viewed as Bayesian inference
Tomasz Korbak
Ethan Perez
Christopher L. Buckley
OffRL
30
71
0
23 May 2022
A Proximal Algorithm for Sampling from Non-convex Potentials
Jiaming Liang
Yongxin Chen
26
4
0
20 May 2022
Posterior Refinement Improves Sample Efficiency in Bayesian Neural Networks
Agustinus Kristiadi
Runa Eschenhagen
Philipp Hennig
BDL
19
12
0
20 May 2022
Continuously-Tempered PDMP Samplers
Matthew Sutton
R. Salomone
Augustin Chevallier
Paul Fearnhead
16
1
0
19 May 2022
An importance sampling approach for reliable and efficient inference in Bayesian ordinary differential equation models
Juho Timonen
Nikolas Siccha
Benjamin B. Bales
Harri Lähdesmäki
Aki Vehtari
4
3
0
18 May 2022
MixFlows: principled variational inference via mixed flows
Zuheng Xu
Na Chen
Trevor Campbell
55
8
0
16 May 2022
On the use of a local
R
^
\hat{R}
R
^
to improve MCMC convergence diagnostic
Théo Moins
Julyan Arbel
A. Dutfoy
Stéphane Girard
17
12
0
13 May 2022
Learning Multitask Gaussian Bayesian Networks
Shuai Liu
Yixuan Qiu
Baojuan Li
Huaning Wang
Xiangyu Chang
14
2
0
11 May 2022
Hamiltonian Monte Carlo Particle Swarm Optimizer
Omatharv Bharat Vaidya
Rithvik Terence DSouza
Snehanshu Saha
S. Dhavala
Swagatam Das
14
0
0
08 May 2022
Variational Inference for Nonlinear Inverse Problems via Neural Net Kernels: Comparison to Bayesian Neural Networks, Application to Topology Optimization
Vahid Keshavarzzadeh
Robert M. Kirby
A. Narayan
BDL
13
2
0
07 May 2022
Probabilistic learning constrained by realizations using a weak formulation of Fourier transform of probability measures
Christian Soize
8
5
0
06 May 2022
A Survey on Uncertainty Toolkits for Deep Learning
Maximilian Pintz
Joachim Sicking
Maximilian Poretschkin
Maram Akila
ELM
28
6
0
02 May 2022
Epistemic Uncertainty-Weighted Loss for Visual Bias Mitigation
Rebecca S Stone
Nishant Ravikumar
A. Bulpitt
David C. Hogg
21
14
0
20 Apr 2022
An Energy-Based Prior for Generative Saliency
Jing Zhang
Jianwen Xie
Nick Barnes
Ping Li
35
3
0
19 Apr 2022
A Variational Approach to Bayesian Phylogenetic Inference
Cheng Zhang
IV FrederickA.Matsen
BDL
16
17
0
16 Apr 2022
Hierarchical Embedded Bayesian Additive Regression Trees
Bruna D. Wundervald
Andrew C. Parnell
Katarina Domijan
20
1
0
14 Apr 2022
Inference over radiative transfer models using variational and expectation maximization methods
D. Svendsen
Daniel Hernández-Lobato
Luca Martino
Valero Laparra
Á. Moreno-Martínez
Gustau Camps-Valls
37
4
0
07 Apr 2022
Energy-based Latent Aligner for Incremental Learning
K. J. Joseph
Salman Khan
F. Khan
Rao Muhammad Anwer
V. Balasubramanian
CLL
28
46
0
28 Mar 2022
Computed Tomography Reconstruction using Generative Energy-Based Priors
Martin Zach
Erich Kobler
T. Pock
DiffM
MedIm
11
12
0
23 Mar 2022
Quantum-enhanced Markov chain Monte Carlo
David Layden
G. Mazzola
R. Mishmash
M. Motta
P. Wocjan
Jin-Sung Kim
S. Sheldon
19
54
0
23 Mar 2022
Out of Distribution Detection, Generalization, and Robustness Triangle with Maximum Probability Theorem
Amir Emad Marvasti
Ehsan Emad Marvasti
Ulas Bagci
OOD
8
0
0
23 Mar 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
28
25
0
20 Mar 2022
Generating Independent Replicates Directly from the Posterior Distribution for a Class of Spatial Latent Gaussian Process Models
J. Bradley
Madelyn Clinch
11
0
0
18 Mar 2022
Alleviating Adversarial Attacks on Variational Autoencoders with MCMC
Anna Kuzina
Max Welling
Jakub M. Tomczak
AAML
DRL
31
12
0
18 Mar 2022
Generalized Score Matching for Regression
Jiazhen Xu
J. Scealy
A. Wood
Tao Zou
17
5
0
18 Mar 2022
Econometric Modeling of Intraday Electricity Market Price with Inadequate Historical Data
Saeed Mohammadi
M. Hesamzadeh
6
4
0
11 Mar 2022
MAGI: A Package for Inference of Dynamic Systems from Noisy and Sparse Data via Manifold-constrained Gaussian Processes
Samuel W. K. Wong
Shihao Yang
S. C. Kou
AI4CE
SyDa
11
9
0
11 Mar 2022
Bayesian inference via sparse Hamiltonian flows
Na Chen
Zuheng Xu
Trevor Campbell
21
14
0
11 Mar 2022
Structure and Distribution Metric for Quantifying the Quality of Uncertainty: Assessing Gaussian Processes, Deep Neural Nets, and Deep Neural Operators for Regression
Ethan Pickering
T. Sapsis
UQCV
14
6
0
09 Mar 2022
Variational Inference with Locally Enhanced Bounds for Hierarchical Models
Tomas Geffner
Justin Domke
16
5
0
08 Mar 2022
A Proximal Algorithm for Sampling
Jiaming Liang
Yongxin Chen
9
17
0
28 Feb 2022
Markov Chain Monte Carlo-Based Machine Unlearning: Unlearning What Needs to be Forgotten
Q. Nguyen
Ryutaro Oikawa
D. Divakaran
M. Chan
K. H. Low
MU
17
37
0
28 Feb 2022
COLD Decoding: Energy-based Constrained Text Generation with Langevin Dynamics
Lianhui Qin
Sean Welleck
Daniel Khashabi
Yejin Choi
AI4CE
44
144
0
23 Feb 2022
UncertaINR: Uncertainty Quantification of End-to-End Implicit Neural Representations for Computed Tomography
Francisca Vasconcelos
Bobby He
Nalini Singh
Yee Whye Teh
BDL
OOD
UQCV
24
12
0
22 Feb 2022
Efficient computation of the volume of a polytope in high-dimensions using Piecewise Deterministic Markov Processes
Augustin Chevallier
F. Cazals
Paul Fearnhead
9
13
0
18 Feb 2022
Deep Generative model with Hierarchical Latent Factors for Time Series Anomaly Detection
Cristian Challu
Peihong Jiang
Ying Nian Wu
Laurent Callot
BDL
AI4TS
11
25
0
15 Feb 2022
DeepONet-Grid-UQ: A Trustworthy Deep Operator Framework for Predicting the Power Grid's Post-Fault Trajectories
Christian Moya
Shiqi Zhang
Meng Yue
Guang Lin
14
42
0
15 Feb 2022
Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo
I. Peis
Chao Ma
José Miguel Hernández-Lobato
BDL
DRL
14
14
0
09 Feb 2022
Adjoint-aided inference of Gaussian process driven differential equations
Paterne Gahungu
Christopher W. Lanyon
Mauricio A. Alvarez
Engineer Bainomugisha
M. Smith
Richard D. Wilkinson
16
5
0
09 Feb 2022
Nonparametric Uncertainty Quantification for Single Deterministic Neural Network
Nikita Kotelevskii
A. Artemenkov
Kirill Fedyanin
Fedor Noskov
Alexander Fishkov
Artem Shelmanov
Artem Vazhentsev
Aleksandr Petiushko
Maxim Panov
UQCV
BDL
48
25
0
07 Feb 2022
Score-based Generative Modeling of Graphs via the System of Stochastic Differential Equations
Jaehyeong Jo
Seul Lee
Sung Ju Hwang
DiffM
22
210
0
05 Feb 2022
Previous
1
2
3
...
7
8
9
...
19
20
21
Next