In many inverse problems, model parameters cannot be precisely determined from observational data. Bayesian inference provides a mechanism for capturing the resulting parameter uncertainty, but typically at a high computational cost. This work introduces a multiscale decomposition that exploits conditional independence across scales, when present in certain classes of inverse problems, to decouple Bayesian inference into two stages: (1) a computationally tractable coarse-scale inference problem; and (2) a mapping of the low-dimensional coarse-scale posterior distribution into the original high-dimensional parameter space. This decomposition relies on a characterization of the non-Gaussian joint distribution of coarse- and fine-scale quantities via optimal transport maps. We demonstrate our approach on a sequence of inverse problems arising in subsurface flow, using the multiscale finite element method to discretize the steady state pressure equation. We compare the multiscale strategy with full-dimensional Markov chain Monte Carlo on a problem of moderate dimension (100 parameters) and then use it to infer a conductivity field described by over 10,000 parameters.
View on arXiv