13
36

Bayesian inverse problems with l1l_1 priors: a Randomize-then-Optimize approach

Abstract

Prior distributions for Bayesian inference that rely on the l1l_1-norm of the parameters are of considerable interest, in part because they promote parameter fields with less regularity than Gaussian priors (e.g., discontinuities and blockiness). These l1l_1-type priors include the total variation (TV) prior and the Besov B1,1sB^s_{1,1} space prior, and in general yield non-Gaussian posterior distributions. Sampling from these posteriors is challenging, particularly in the inverse problem setting where the parameter space is high-dimensional and the forward problem may be nonlinear. This paper extends the randomize-then-optimize (RTO) method, an optimization-based sampling algorithm developed for Bayesian inverse problems with Gaussian priors, to inverse problems with l1l_1-type priors. We use a variable transformation to convert an l1l_1-type prior to a standard Gaussian prior, such that the posterior distribution of the transformed parameters is amenable to Metropolized sampling via RTO. We demonstrate this approach on several deconvolution problems and an elliptic PDE inverse problem, using TV or Besov B1,1sB^s_{1,1} space priors. Our results show that the transformed RTO algorithm characterizes the correct posterior distribution and can be more efficient than other sampling algorithms. The variable transformation can also be extended to other non-Gaussian priors.

View on arXiv
Comments on this paper