ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.1901
  4. Cited By
MCMC using Hamiltonian dynamics

MCMC using Hamiltonian dynamics

9 June 2012
Radford M. Neal
ArXivPDFHTML

Papers citing "MCMC using Hamiltonian dynamics"

50 / 1,031 papers shown
Title
Generative Modeling by Inclusive Neural Random Fields with Applications
  in Image Generation and Anomaly Detection
Generative Modeling by Inclusive Neural Random Fields with Applications in Image Generation and Anomaly Detection
Yunfu Song
Zhijian Ou
DiffM
6
30
0
01 Jun 2018
Bayesian Pose Graph Optimization via Bingham Distributions and Tempered
  Geodesic MCMC
Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC
Tolga Birdal
Umut Simsekli
M. Eken
Slobodan Ilic
9
38
0
31 May 2018
Hamiltonian Variational Auto-Encoder
Hamiltonian Variational Auto-Encoder
Anthony L. Caterini
Arnaud Doucet
Dino Sejdinovic
BDL
DRL
11
94
0
29 May 2018
Bayesian Learning with Wasserstein Barycenters
Bayesian Learning with Wasserstein Barycenters
Julio D. Backhoff Veraguas
J. Fontbona
Gonzalo Rios
Felipe A. Tobar
15
29
0
28 May 2018
Ergodic Inference: Accelerate Convergence by Optimisation
Ergodic Inference: Accelerate Convergence by Optimisation
Yichuan Zhang
José Miguel Hernández-Lobato
BDL
11
9
0
25 May 2018
Langevin Markov Chain Monte Carlo with stochastic gradients
Langevin Markov Chain Monte Carlo with stochastic gradients
Charles Matthews
J. Weare
BDL
6
6
0
22 May 2018
Sampling-Free Variational Inference of Bayesian Neural Networks by
  Variance Backpropagation
Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation
Manuel Haussmann
Fred Hamprecht
M. Kandemir
BDL
13
6
0
19 May 2018
Semi-parametric Bayesian change-point model based on the Dirichlet
  process
Semi-parametric Bayesian change-point model based on the Dirichlet process
G. Mastrantonio
11
0
0
16 May 2018
Improving Predictive Uncertainty Estimation using Dropout -- Hamiltonian
  Monte Carlo
Improving Predictive Uncertainty Estimation using Dropout -- Hamiltonian Monte Carlo
Diego Vergara
S. Hernández
Matias Valdenegro-Toro
Felipe Jorquera
UQCV
BDL
9
0
0
12 May 2018
Subsampling Sequential Monte Carlo for Static Bayesian Models
Subsampling Sequential Monte Carlo for Static Bayesian Models
David Gunawan
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
11
46
0
08 May 2018
Bayeslands: A Bayesian inference approach for parameter uncertainty
  quantification in Badlands
Bayeslands: A Bayesian inference approach for parameter uncertainty quantification in Badlands
Rohitash Chandra
Danial Azam
R. Müller
T. Salles
Sally Cripps
19
20
0
02 May 2018
Coupling and Convergence for Hamiltonian Monte Carlo
Coupling and Convergence for Hamiltonian Monte Carlo
Nawaf Bou-Rabee
A. Eberle
Raphael Zimmer
73
136
0
01 May 2018
Persistent Monitoring of Stochastic Spatio-temporal Phenomena with a
  Small Team of Robots
Persistent Monitoring of Stochastic Spatio-temporal Phenomena with a Small Team of Robots
S. Garg
Nora Ayanian
18
28
0
27 Apr 2018
Nonparametric Bayesian label prediction on a large graph using truncated
  Laplacian regularization
Nonparametric Bayesian label prediction on a large graph using truncated Laplacian regularization
Jarno Hartog
Harry Van Zanten
9
3
0
13 Apr 2018
Motor Unit Number Estimation via Sequential Monte Carlo
Motor Unit Number Estimation via Sequential Monte Carlo
S. Taylor
Chris Sherlock
Gareth Ridall
Paul Fearnhead
23
1
0
11 Apr 2018
Accelerating MCMC Algorithms
Accelerating MCMC Algorithms
Christian P. Robert
Victor Elvira
Nicholas G. Tawn
Changye Wu
12
140
0
08 Apr 2018
Hamiltonian Monte Carlo for Probabilistic Programs with Discontinuities
Hamiltonian Monte Carlo for Probabilistic Programs with Discontinuities
Bradley Gram-Hansen
Yuanshuo Zhou
Tobias Kohn
Tom Rainforth
Hongseok Yang
Frank D. Wood
8
3
0
07 Apr 2018
Frequency violations from random disturbances: an MCMC approach
Frequency violations from random disturbances: an MCMC approach
John Moriarty
Jure Vogrinc
Alessandro Zocca
14
7
0
22 Mar 2018
Building a Telescope to Look Into High-Dimensional Image Spaces
Building a Telescope to Look Into High-Dimensional Image Spaces
Mitch Hill
Erik Nijkamp
Song-Chun Zhu
DiffM
13
9
0
02 Mar 2018
Analysis of Langevin Monte Carlo via convex optimization
Analysis of Langevin Monte Carlo via convex optimization
Alain Durmus
Szymon Majewski
B. Miasojedow
27
216
0
26 Feb 2018
Sampling as optimization in the space of measures: The Langevin dynamics
  as a composite optimization problem
Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem
Andre Wibisono
13
177
0
22 Feb 2018
Neural Network Renormalization Group
Neural Network Renormalization Group
Shuo-Hui Li
Lei Wang
BDL
DRL
21
126
0
08 Feb 2018
Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent
Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent
Trevor Campbell
Tamara Broderick
12
136
0
05 Feb 2018
Embedded Model Error Representation for Bayesian Model Calibration
Embedded Model Error Representation for Bayesian Model Calibration
K. Sargsyan
Xun Huan
H. Najm
28
45
0
21 Jan 2018
Log-concave sampling: Metropolis-Hastings algorithms are fast
Log-concave sampling: Metropolis-Hastings algorithms are fast
Raaz Dwivedi
Yuansi Chen
Martin J. Wainwright
Bin Yu
23
250
0
08 Jan 2018
Deterministic Sampling of Expensive Posteriors Using Minimum Energy
  Designs
Deterministic Sampling of Expensive Posteriors Using Minimum Energy Designs
V. R. Joseph
Dianpeng Wang
Li Gu
Shiji Lyu
Rui Tuo
11
36
0
24 Dec 2017
Wave function representation of probability distributions
Wave function representation of probability distributions
Madeleine B. Thompson
13
1
0
21 Dec 2017
Noisy Natural Gradient as Variational Inference
Noisy Natural Gradient as Variational Inference
Guodong Zhang
Shengyang Sun
D. Duvenaud
Roger C. Grosse
ODL
16
210
0
06 Dec 2017
A trans-disciplinary review of deep learning research for water
  resources scientists
A trans-disciplinary review of deep learning research for water resources scientists
Chaopeng Shen
AI4CE
25
681
0
06 Dec 2017
Thermostat-assisted continuously-tempered Hamiltonian Monte Carlo for
  Bayesian learning
Thermostat-assisted continuously-tempered Hamiltonian Monte Carlo for Bayesian learning
Rui Luo
Jianhong Wang
Yaodong Yang
Zhanxing Zhu
Jun Wang
12
13
0
30 Nov 2017
Informed proposals for local MCMC in discrete spaces
Informed proposals for local MCMC in discrete spaces
Giacomo Zanella
20
121
0
20 Nov 2017
Non-reversible, tuning- and rejection-free Markov chain Monte Carlo via
  iterated random functions
Non-reversible, tuning- and rejection-free Markov chain Monte Carlo via iterated random functions
A. Sepehri
J. Marković
16
4
0
20 Nov 2017
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
36
684
0
15 Nov 2017
Kernel Conditional Exponential Family
Kernel Conditional Exponential Family
Michael Arbel
A. Gretton
15
25
0
15 Nov 2017
Geometric integrators and the Hamiltonian Monte Carlo method
Geometric integrators and the Hamiltonian Monte Carlo method
Nawaf Bou-Rabee
J. Sanz-Serna
20
97
0
14 Nov 2017
Adaptive Bayesian Sampling with Monte Carlo EM
Adaptive Bayesian Sampling with Monte Carlo EM
A. Roychowdhury
S. Parthasarathy
27
1
0
06 Nov 2017
Inversion using a new low-dimensional representation of complex binary
  geological media based on a deep neural network
Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network
E. Laloy
Romain Hérault
J. Lee
D. Jacques
N. Linde
16
192
0
25 Oct 2017
Zero Variance and Hamiltonian Monte Carlo Methods in GARCH Models
Zero Variance and Hamiltonian Monte Carlo Methods in GARCH Models
Rafael S. Paixão
R. Ehlers
15
1
0
20 Oct 2017
Finite-dimensional Gaussian approximation with linear inequality
  constraints
Finite-dimensional Gaussian approximation with linear inequality constraints
A. F. López-Lopera
F. Bachoc
N. Durrande
O. Roustant
9
67
0
20 Oct 2017
Convergence Rate of Riemannian Hamiltonian Monte Carlo and Faster
  Polytope Volume Computation
Convergence Rate of Riemannian Hamiltonian Monte Carlo and Faster Polytope Volume Computation
Y. Lee
Santosh Vempala
28
113
0
17 Oct 2017
Data analysis recipes: Using Markov Chain Monte Carlo
Data analysis recipes: Using Markov Chain Monte Carlo
D. Hogg
D. Foreman-Mackey
14
206
0
17 Oct 2017
Automated Scalable Bayesian Inference via Hilbert Coresets
Automated Scalable Bayesian Inference via Hilbert Coresets
Trevor Campbell
Tamara Broderick
19
127
0
13 Oct 2017
Bayesian Hypernetworks
Bayesian Hypernetworks
David M. Krueger
Chin-Wei Huang
Riashat Islam
Ryan Turner
Alexandre Lacoste
Aaron Courville
UQCV
BDL
17
139
0
13 Oct 2017
sgmcmc: An R Package for Stochastic Gradient Markov Chain Monte Carlo
sgmcmc: An R Package for Stochastic Gradient Markov Chain Monte Carlo
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
24
11
0
02 Oct 2017
Learning Energy-Based Models as Generative ConvNets via Multi-grid
  Modeling and Sampling
Learning Energy-Based Models as Generative ConvNets via Multi-grid Modeling and Sampling
Ruiqi Gao
Yang Lu
Junpei Zhou
Song-Chun Zhu
Ying Nian Wu
24
78
0
26 Sep 2017
Hamiltonian Flow Simulation of Rare Events
Hamiltonian Flow Simulation of Rare Events
R. Douady
Shohruh Miryusupov
33
0
0
05 Sep 2017
Unbiased Hamiltonian Monte Carlo with couplings
Unbiased Hamiltonian Monte Carlo with couplings
J. Heng
Pierre E. Jacob
16
63
0
01 Sep 2017
Earth System Modeling 2.0: A Blueprint for Models That Learn From
  Observations and Targeted High-Resolution Simulations
Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations
T. Schneider
Shiwei Lan
Andrew M. Stuart
J. Teixeira
AI4Cl
19
313
0
31 Aug 2017
BAMBI: An R package for Fitting Bivariate Angular Mixture Models
BAMBI: An R package for Fitting Bivariate Angular Mixture Models
Saptarshi Chakraborty
Samuel W. K. Wong
25
16
0
25 Aug 2017
Rapid Mixing of Hamiltonian Monte Carlo on Strongly Log-Concave
  Distributions
Rapid Mixing of Hamiltonian Monte Carlo on Strongly Log-Concave Distributions
Oren Mangoubi
Aaron Smith
27
106
0
23 Aug 2017
Previous
123...161718192021
Next