Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1111.4246
Cited By
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
18 November 2011
Matthew D. Hoffman
Andrew Gelman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo"
50 / 893 papers shown
Title
Energy-guided Entropic Neural Optimal Transport
Petr Mokrov
Alexander Korotin
Alexander Kolesov
Nikita Gushchin
Evgeny Burnaev
OT
49
21
0
12 Apr 2023
Black Box Variational Inference with a Deterministic Objective: Faster, More Accurate, and Even More Black Box
Ryan Giordano
Martin Ingram
Tamara Broderick
58
12
0
11 Apr 2023
PriorCVAE: scalable MCMC parameter inference with Bayesian deep generative modelling
Elizaveta Semenova
Prakhar Verma
Max Cairney-Leeming
Arno Solin
Samir Bhatt
Seth Flaxman
BDL
22
3
0
09 Apr 2023
Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry
J. G. Wiese
Lisa Wimmer
Theodore Papamarkou
Bernd Bischl
Stephan Günnemann
David Rügamer
24
11
0
06 Apr 2023
Theoretical guarantees for neural control variates in MCMC
Denis Belomestny
Artur Goldman
A. Naumov
S. Samsonov
BDL
DRL
11
6
0
03 Apr 2023
Bayesian neural networks via MCMC: a Python-based tutorial
Rohitash Chandra
Royce Chen
Joshua Simmons
BDL
31
10
0
02 Apr 2023
A Practitioner's Guide to Bayesian Inference in Pharmacometrics using Pumas
Mohamed Tarek
J. Storópoli
Casey B. Davis
C. Elrod
Julius Krumbiegel
Chris Rackauckas
V. Ivaturi
GP
15
3
0
31 Mar 2023
Fluctuation without dissipation: Microcanonical Langevin Monte Carlo
Jakob Robnik
U. Seljak
43
6
0
31 Mar 2023
Generalised Linear Mixed Model Specification, Analysis, Fitting, and Optimal Design in R with the glmmr Packages
S. Watson
18
3
0
22 Mar 2023
Bayesian Pseudo-Coresets via Contrastive Divergence
Piyush Tiwary
Kumar Shubham
V. Kashyap
Prathosh A.P.
21
3
0
20 Mar 2023
Neural Probabilistic Logic Programming in Discrete-Continuous Domains
Lennert De Smet
Pedro Zuidberg Dos Martires
Robin Manhaeve
G. Marra
Angelika Kimmig
Luc de Raedt
NAI
11
20
0
08 Mar 2023
Eryn : A multi-purpose sampler for Bayesian inference
N. Karnesis
Michael L. Katz
N. Korsakova
J. Gair
N. Stergioulas
13
28
0
03 Mar 2023
Bayesian Quantification with Black-Box Estimators
Albert Ziegler
Paweł Czyż
UQCV
18
0
0
17 Feb 2023
Piecewise Deterministic Markov Processes for Bayesian Neural Networks
Ethan Goan
Dimitri Perrin
Kerrie Mengersen
Clinton Fookes
20
0
0
17 Feb 2023
Thermodynamic AI and the fluctuation frontier
Patrick J. Coles
Collin Szczepanski
Denis Melanson
Kaelan Donatella
Antonio J. Martinez
Faris M. Sbahi
AI4CE
34
16
0
09 Feb 2023
Gibbsian polar slice sampling
Philip Schär
Michael Habeck
Daniel Rudolf
11
9
0
08 Feb 2023
Federated Variational Inference Methods for Structured Latent Variable Models
Conor Hassan
Roberto Salomone
Kerrie Mengersen
BDL
FedML
16
4
0
07 Feb 2023
Fixed-kinetic Neural Hamiltonian Flows for enhanced interpretability and reduced complexity
Vincent Souveton
Arnaud Guillin
J. Jasche
G. Lavaux
Manon Michel
18
3
0
03 Feb 2023
Automatically Marginalized MCMC in Probabilistic Programming
Jinlin Lai
Javier Burroni
Hui Guan
Daniel Sheldon
18
3
0
01 Feb 2023
Improving and generalizing flow-based generative models with minibatch optimal transport
Alexander Tong
Kilian Fatras
Nikolay Malkin
G. Huguet
Yanlei Zhang
Jarrid Rector-Brooks
Guy Wolf
Yoshua Bengio
OOD
DiffM
OT
35
230
0
01 Feb 2023
Misspecification-robust Sequential Neural Likelihood for Simulation-based Inference
Ryan P. Kelly
David J. Nott
David T. Frazier
D. Warne
Christopher C. Drovandi
25
10
0
31 Jan 2023
A theory of continuous generative flow networks
Salem Lahlou
T. Deleu
Pablo Lemos
Dinghuai Zhang
Alexandra Volokhova
Alex Hernández-García
Léna Néhale Ezzine
Yoshua Bengio
Nikolay Malkin
AI4CE
39
79
0
30 Jan 2023
AutoPEFT: Automatic Configuration Search for Parameter-Efficient Fine-Tuning
Han Zhou
Xingchen Wan
Ivan Vulić
Anna Korhonen
16
45
0
28 Jan 2023
Sequential Bayesian Learning for Hidden Semi-Markov Models
Patrick Aschermayr
K. Kalogeropoulos
13
0
0
25 Jan 2023
Scalable Gaussian Process Inference with Stan
Till Hoffmann
J. Onnela
GP
14
4
0
21 Jan 2023
Bayesian Hierarchical Models for Counterfactual Estimation
Natraj Raman
Daniele Magazzeni
Sameena Shah
23
5
0
21 Jan 2023
Physics-informed Information Field Theory for Modeling Physical Systems with Uncertainty Quantification
A. Alberts
Ilias Bilionis
32
12
0
18 Jan 2023
Bayesian Weapon System Reliability Modeling with Cox-Weibull Neural Network
Michael Potter
Benny Cheng
OOD
25
3
0
04 Jan 2023
Design of Hamiltonian Monte Carlo for perfect simulation of general continuous distributions
G. Leigh
Amanda R. Northrop
21
1
0
23 Dec 2022
Microcanonical Hamiltonian Monte Carlo
Jakob Robnik
G. Luca
E. Silverstein
U. Seljak
27
14
0
16 Dec 2022
Bayesian posterior approximation with stochastic ensembles
Oleksandr Balabanov
Bernhard Mehlig
H. Linander
BDL
UQCV
27
5
0
15 Dec 2022
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
J. Zavadlav
25
21
0
15 Dec 2022
Bridging POMDPs and Bayesian decision making for robust maintenance planning under model uncertainty: An application to railway systems
Giacomo Arcieri
C. Hoelzl
Oliver Schwery
D. Štraub
K. Papakonstantinou
Eleni Chatzi
14
21
0
15 Dec 2022
The Ordered Matrix Dirichlet for State-Space Models
Niklas Stoehr
Benjamin J. Radford
Ryan Cotterell
Aaron Schein
16
5
0
08 Dec 2022
Approximate Gibbs Sampler for Efficient Inference of Hierarchical Bayesian Models for Grouped Count Data
Jin-Zhu Yu
H. Baroud
9
0
0
28 Nov 2022
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
22
19
0
25 Nov 2022
Bayesian Learning for Neural Networks: an algorithmic survey
M. Magris
Alexandros Iosifidis
BDL
DRL
35
68
0
21 Nov 2022
Moment Propagation
J. Ormerod
Weichang Yu
11
0
0
21 Nov 2022
Unadjusted Hamiltonian MCMC with Stratified Monte Carlo Time Integration
Nawaf Bou-Rabee
Milo Marsden
32
12
0
20 Nov 2022
Bayesian autoencoders for data-driven discovery of coordinates, governing equations and fundamental constants
Liyao (Mars) Gao
J. Nathan Kutz
AI4CE
32
20
0
19 Nov 2022
An Empirical Analysis of the Advantages of Finite- v.s. Infinite-Width Bayesian Neural Networks
Jiayu Yao
Yaniv Yacoby
Beau Coker
Weiwei Pan
Finale Doshi-Velez
19
1
0
16 Nov 2022
Orthogonal Polynomials Approximation Algorithm (OPAA):a functional analytic approach to estimating probability densities
Lilian W. Bialokozowicz
TPM
20
0
0
16 Nov 2022
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Mrinank Sharma
Sebastian Farquhar
Eric T. Nalisnick
Tom Rainforth
BDL
16
52
0
11 Nov 2022
Bayesian score calibration for approximate models
Joshua J. Bon
D. Warne
David J. Nott
Christopher C. Drovandi
29
3
0
10 Nov 2022
EEG-based performance-driven adaptive automated hazard alerting system in security surveillance support
Xiaoshan Zhou
P-C. Liao
14
6
0
09 Nov 2022
Bayesian Neural Networks for Macroeconomic Analysis
Niko Hauzenberger
Florian Huber
K. Klieber
Massimiliano Marcellino
BDL
29
1
0
09 Nov 2022
Fully Bayesian inference for latent variable Gaussian process models
Suraj Yerramilli
Akshay Iyer
Wei-Neng Chen
D. Apley
8
2
0
04 Nov 2022
A Bayesian Semiparametric Method For Estimating Causal Quantile Effects
Steven G. Xu
Shu Yang
Brian J. Reich
CML
8
1
0
03 Nov 2022
An optimal control perspective on diffusion-based generative modeling
Julius Berner
Lorenz Richter
Karen Ullrich
DiffM
28
80
0
02 Nov 2022
Nonlinear System Identification: Learning while respecting physical models using a sequential Monte Carlo method
A. Wigren
Johan Wågberg
Fredrik Lindsten
A. Wills
Thomas B. Schon
11
10
0
26 Oct 2022
Previous
1
2
3
...
5
6
7
...
16
17
18
Next